【題目】已知{an}是等差數(shù)列,{bn}是各項(xiàng)均為正數(shù)的等比數(shù)列,且b1a11b3a4b1b2b3a3a4.

(1)求數(shù)列{an},{bn}的通項(xiàng)公式;

(2)設(shè)cnanbn,求數(shù)列{cn}的前n項(xiàng)和Tn.

【答案】(1) ;(2)Tn(n1)·2n1.

【解析】試題分析:

(1)設(shè)數(shù)列的公差為 的公比為,運(yùn)用等差數(shù)列和等比數(shù)列的通項(xiàng)公式,可得的方程組,解方程可得公差和公比,即可得到所求通項(xiàng)公式;

(2)求得,運(yùn)用乘公比錯(cuò)位相減法,結(jié)合等比數(shù)列的求和公式,化簡(jiǎn)整理即可得到所求的和.

試題解析:

(1)設(shè)數(shù)列{an}的公差為d,{bn}的公比為q,

依題意得解得d=1,q=2.

所以an=1+(n-1)×1=n,bn=1×2n-1=2n-1.

(2)(1)cn=anbn=n·2n-1,則

Tn=1·20+2·21+3·22+…+n·2n-1,①

2Tn=2·20+2·22+…+(n-1)·2n-1+n·2n,②

①-②得:-Tn=1+21+22+…+2n-1-n·2n

-n·2n=(1-n)·2n-1,

所以Tn=(n-1)·2n+1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某項(xiàng)競(jìng)賽分為初賽、復(fù)賽、決賽三個(gè)階段進(jìn)行,每個(gè)階段選手要回答一個(gè)問(wèn)題.規(guī)定正確回答問(wèn)題者進(jìn)入下一階段競(jìng)賽,否則即遭淘汰.已知某選手通過(guò)初賽、復(fù)賽、決賽的概率分別是且各階段通過(guò)與否相互獨(dú)立.

(1)求該選手在復(fù)賽階段被淘汰的概率;

(2)設(shè)該選手在競(jìng)賽中回答問(wèn)題的個(gè)數(shù)為ξ,求ξ的分布列與均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

()當(dāng)a1時(shí),的解集;

()當(dāng)時(shí), 恒成立求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面 平面 , ,

)求證: 平面;

)求平面與平面所成角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2017·太原市模擬題)已知ab,c分別是ABC的內(nèi)角AB,C所對(duì)的邊,a2bcosB,bc.

(1)證明:A2B

(2)a2c2b22acsinC,求A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),若以該直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2θ4cos θ0.

(1)求直線l與曲線C的普通方程;

(2)已知直線l與曲線C交于A,B兩點(diǎn),設(shè)M(2,0),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

近年來(lái),隨著雙十一、雙十二等網(wǎng)絡(luò)活動(dòng)的風(fēng)靡,各大網(wǎng)商都想出了一系列的降價(jià)方案,以此來(lái)提高自己的產(chǎn)品利潤(rùn). 已知在2016年雙十一某網(wǎng)商的活動(dòng)中,某店家采取了兩種優(yōu)惠方案以供選擇:

方案一:購(gòu)物滿(mǎn)400元以上的,超出400元的部分只需支出超出部分的x%;

方案二:購(gòu)物滿(mǎn)400元以上的,可以參加電子抽獎(jiǎng)活動(dòng),即從1,2,3,4,5,6這6張卡牌中任取2張,將得到的數(shù)字相加,所得結(jié)果與享受優(yōu)惠如下:

數(shù)字和

[3,4]

[5,7]

[8,9]

[10,11]

實(shí)際付款

原價(jià)

9折

8折

5折

(Ⅰ)若某顧客消費(fèi)了800元,且選擇方案二,求該顧客只需支付640元的概率;

(Ⅱ)若某顧客購(gòu)物金額為500元,她選擇了方案二后,得到的數(shù)字之和為6,此時(shí)她發(fā)現(xiàn)使用方案一、二最后支付的金額相同,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)x2aln x(a>0)的最小值是1.

(1)a;

(2)若關(guān)于x的方程f2(x)ex6mf(x)9mex0在區(qū)間[1,+)有唯一的實(shí)根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2-ax+2lnx,a∈R.

(Ⅰ)若曲線y=f(x)在(1,f(1))處的切線垂直于直線y=x,求函數(shù)f(x)的單調(diào)區(qū)間;

(Ⅱ)若x>1時(shí),f(x)>0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案