8.若函數(shù)f(x)=sinx+3|sinx|+b(x∈[0,2π])恰有三個不同的零點,則b=-2或0.

分析 由題意-b=sinx+3|sinx|,x∈[0,2π];作函數(shù)y=sinx+3|sinx|,x∈[0,2π]的圖象求解.

解答 解:∵函數(shù)f(x)=sinx+3|sinx|+b,x∈[0,2π]恰有三個零點,
則-b=sinx+3|sinx|,x∈[0,2π]有三個根;
作函數(shù)y=sinx+3|sinx|,x∈[0,2π]的圖象如下;


則由圖象可知,-b=2,或-b=0,即b=-2或b=0,;
故答案為:-2或0

點評 本題考查了函數(shù)的零點與函數(shù)的圖象的關(guān)系,數(shù)形結(jié)合思想,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=-x3+ax2-x-1在R上不是單調(diào)函數(shù),則實數(shù)a的取值范圍是(  )
A.[-$\sqrt{3}$,$\sqrt{3}$]B.(-$\sqrt{3}$,$\sqrt{3}$)C.(-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞)D.(-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知$\vec m$=(pcosx+q,psinx),$\vec n$=(1,-$\sqrt{3}$),f(x)=$\vec m•\vec n$,△ABC的角A,B,C所對的邊分別為a,b,c.
(Ⅰ)若p<0時,f(x)在[0,π]上的最大值為2,最小值為-1,求p,q的值;
(Ⅱ)在(Ⅰ)的條件下,若f(A)=1,b=1,S△ABC=$\frac{{\sqrt{3}}}{2}$,求邊a,角C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=alnx+$\frac{1-a}{2}{x}^{2}-x$,a≠1.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若關(guān)于x的不等式f(x)<$\frac{a}{a-1}$在[1,+∞)上有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若直線y=kx+2與曲線y=$\sqrt{1-{x^2}}$有兩個公共點,則k的取值范圍是$[{-2,-\sqrt{3}})∪({\sqrt{3},2}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.記不等式x2+x-6<0的解集為集合A,函數(shù)y=lg(x-a)的定義域為集合B.
(1)當(dāng)a=-1時,求A∩B;
(2)若“x∈A”是“x∈B”的充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知f(x)為R上的可導(dǎo)函數(shù),且?x∈R,均有f(x)>f′(x),則以下判斷正確的是( 。
A.f(2016)>e2016f(0)B.f(2016)<e2016f(0)
C.f(2016)=e2016f(0)D.f(2016)與e2016f(0)大小無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)A為圓(x-2)2+(y-2)2=2上一動點,則A到直線x-y-4=0的最大距離為$3\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=lnx-a2x2+ax(a∈R)在區(qū)間(1,+∞)上是減函數(shù),則實數(shù)a的取值范圍是(-∞,-$\frac{1}{2}$]∪[1,+∞).

查看答案和解析>>

同步練習(xí)冊答案