在△ABC,設(shè)角A,B,C的對邊分別為a,b,c,且=,則角B=   
【答案】分析:利用正弦定理將轉(zhuǎn)化為,再利用兩角和與差的正弦函數(shù)即可求得角B.
解答:解:∵在△ABC,=,由正弦定理===2R得:=,
=
∴sinBcosC=2sinAcosB-sinCcosB,
∴sin(B+C)=2sinAcosB,又在△ABC,B+C=π-A,
∴sin(B+C)=sinA≠0,
∴cosB=,又B∈(0,π),
∴B=
故答案為:
點評:本題考查正弦定理與兩角和與差的正弦,考查轉(zhuǎn)化思想與運算能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在△ABC中設(shè)角A,B,C所對的邊長分別為a,b,c,且
cosC
cosB
=
2a-c
b
,則角B=( 。
A、30°B、60°
C、90°D、120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•和平區(qū)三模)在△ABC,設(shè)角A,B,C的對邊分別為a,b,c,且
cosC
cosB
=
2a-c
b
,則角B=
π
3
π
3

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年人教版高考數(shù)學文科二輪專題復習提分訓練13練習卷(解析版) 題型:填空題

在△ABC,設(shè)角A,B,C的對邊分別為a,b,c,a=(cosC,2a-c),b=(b,-cosB)ab,B=    .

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年浙江省寧波市鄞州高級中學高三(上)12月月考數(shù)學試卷(理科)(解析版) 題型:選擇題

在△ABC中設(shè)角A,B,C所對的邊長分別為a,b,c,且,則角B=( )
A.30°
B.60°
C.90°
D.120°

查看答案和解析>>

同步練習冊答案