已知正項(xiàng)數(shù)列{an}滿(mǎn)足:an2-nan-(n+1)=0,數(shù)列{bn}的前n項(xiàng)和為Sn,且Sn=2bn-2.
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{
1anlog2bn
}
的前n項(xiàng)和Tn
分析:(Ⅰ)解方程an2-nan-(n+1)=0,得an,由Sn=2bn-2,得n≥2時(shí),Sn-1=2bn-1-2,兩式相減得bn的遞推式,根據(jù)遞推式可判斷{bn}為等比數(shù)列,進(jìn)而可求得bn
(Ⅱ)由(Ⅰ)可得
1
anlog2bn
,拆項(xiàng)后利用裂項(xiàng)相消法可求得Tn
解答:解:(Ⅰ)由an2-nan-(n+1)=0,得an=n+1,或an=-1(舍去),
∴an=n+1;
又Sn=2bn-2,∴n≥2時(shí),Sn-1=2bn-1-2,
兩式相減,得bn=Sn-Sn-1=2bn-2bn-1,
∴bn=2bn-1(n≥2),
∴{bn}為等比數(shù)列,公比q=2,
又∵S1=b1=2b1-2,∴b1=2,
bn=2×2n-1=2n
(Ⅱ)由(Ⅰ)知,an=n+1,bn=2n,
1
an•log2bn
=
1
(n+1)log22n
=
1
n(n+1)
=
1
n
-
1
n+1
,
Tn=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1

=1-
1
n+1
=
n
n+1
點(diǎn)評(píng):本題考查由遞推式求數(shù)列通項(xiàng)、等差數(shù)列等比數(shù)列的通項(xiàng)公式、數(shù)列求和等知識(shí),裂相消法對(duì)數(shù)列求和是高考考查的重點(diǎn)內(nèi)容,要熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)數(shù)列{an}滿(mǎn)足:a1=3,(2n-1)an+2=(2n+1)an-1+8n2(n>1,n∈N*
(1)求證:數(shù)列{
an
2n+1
}
為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)an
(2)設(shè)bn=
1
an
,求數(shù)列{bn}的前n項(xiàng)和為Sn,并求Sn的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:稱(chēng)
n
a1+a2+…+an
為n個(gè)正數(shù)a1,a2,…,an的“均倒數(shù)”,已知正項(xiàng)數(shù)列{an}的前n項(xiàng)的“均倒數(shù)”為
1
2n
,則
lim
n→∞
nan
sn
( 。
A、0
B、1
C、2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)數(shù)列an中,a1=2,點(diǎn)(
an
,an+1)
在函數(shù)y=x2+1的圖象上,數(shù)列bn中,點(diǎn)(bn,Tn)在直線(xiàn)y=-
1
2
x+3
上,其中Tn是數(shù)列bn的前項(xiàng)和.(n∈N+).
(1)求數(shù)列an的通項(xiàng)公式;
(2)求數(shù)列bn的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)數(shù)列{an}滿(mǎn)足a1=1,an+1=an2+2an(n∈N+),令bn=log2(an+1).
(1)求證:數(shù)列{bn}為等比數(shù)列;
(2)記Tn為數(shù)列{
1
log2bn+1log2bn+2
}
的前n項(xiàng)和,是否存在實(shí)數(shù)a,使得不等式Tn<log0.5(a2-
1
2
a)
對(duì)?n∈N+恒成立?若存在,求出實(shí)數(shù)a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正項(xiàng)數(shù)列{an},Sn=
1
8
(an+2)2

(1)求證:{an}是等差數(shù)列;
(2)若bn=
1
2
an-30
,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊(cè)答案