過拋物線上一定點(diǎn),作兩條直線分別交拋物線于.當(dāng)的斜率存在且傾斜角互補(bǔ)時(shí),則的值為(    )

A.       B.       C.       D.無法確定

 

【答案】

B

【解析】

試題分析:設(shè)直線斜率為,則直線的方程為,與聯(lián)立方程組消去得:由韋達(dá)定理得:;因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013022710005168225059/SYS201302271001121822758927_DA.files/image001.png">與的傾斜角互補(bǔ),所以的斜率為,同理可得:,所以

考點(diǎn):本小題主要考查直線與拋物線的位置關(guān)系、韋達(dá)定理、傾斜角與斜率的關(guān)系等知識(shí),考查了學(xué)生分析問題、解答問題的能力和運(yùn)算求解能力.

點(diǎn)評(píng):的斜率存在且傾斜角互補(bǔ),所以它們的斜率互為相反數(shù),從而想到分別設(shè)它們的斜率為,從而使問題得到解決.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,過拋物線上一定點(diǎn),作兩條直線分別交拋物線于,(1)求該拋物線上縱坐標(biāo)為的點(diǎn)到其焦點(diǎn)的距離;(2)當(dāng)的斜率存在且傾斜角互補(bǔ)時(shí),求的值,并證明直線的斜率是非零常數(shù)。


查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線上一定點(diǎn)

,作直線分別交拋物線于

(1)求該拋物線上縱坐標(biāo)為的點(diǎn)到焦點(diǎn)的距離;

(2)當(dāng)的斜率存在且傾斜角互補(bǔ)時(shí),求的值,并證明直線的斜率是非零常數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三上學(xué)期期末試題文科數(shù)學(xué) 題型:解答題

已知橢圓的離心率為,為橢圓的左右焦點(diǎn),;分別為橢圓的長(zhǎng)軸和短軸的端點(diǎn)(如圖) . 若四邊形的面積為.

(Ⅰ)求橢圓的方程.

(Ⅱ)拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,過點(diǎn)任意作一條直線,交拋物線兩點(diǎn). 證明:以為直徑的所有圓是否過拋物線上一定點(diǎn).

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省瑞安中學(xué)2011-2012學(xué)年高三上學(xué)期期末試題數(shù)學(xué)文 題型:解答題

 已知橢圓的離心率為,為橢圓的左右焦點(diǎn),分別為橢圓的長(zhǎng)軸和短軸的端點(diǎn)(如圖) . 若四邊形的面積為.

(Ⅰ)求橢圓的方程.

(Ⅱ)拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,過點(diǎn)任意作一條直線,交拋物線兩點(diǎn). 證明:以為直徑的所有圓是否過拋物線上一定點(diǎn).

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案