如圖是一個破損的圓塊,只給出一把帶有刻度的直尺和一個量角器,請給出計算這個圓塊直徑長度的一種方案.
方案為:①作圓塊的內(nèi)接△ABC;
方案為:①作圓塊的內(nèi)接△ABC;

②用直尺量出邊長a,用量角器量出對角A.
②用直尺量出邊長a,用量角器量出對角A.

③用正弦定理求出直徑:2R=
a
sinA
③用正弦定理求出直徑:2R=
a
sinA
分析:方案一:在圓周上找出三個點,用直尺順次連接三點,可得圓的內(nèi)接三角形,分別表上字母A,B,C,用刻度尺量出邊長a的長,且用量角器測出角A的度數(shù),根據(jù)正弦定理即可求出圓塊的直徑;
方案二:同理作出圓內(nèi)接三角形ABC,用刻度尺分別量出三邊長,利用余弦定理表示出cosA,把三邊長代入可求出cosA的值,由A的范圍,利用特殊角的三角函數(shù)值即可求出A的度數(shù),由a和sinA的值,利用正弦定理即可求出圓塊的直徑.
(兩種方案,任選擇一種即可)
解答:解:方案一:①作圓塊的內(nèi)接△ABC;
②用直尺量出邊長a,用量角器量出對角A.
③用正弦定理求出直徑:2R=
a
sinA

方案二:①作圓塊內(nèi)接△ABC;
②用直尺量出三邊的長a,b,c,用余弦定理求出角A;
③由正弦定理可求出直徑:2R=
a
sinA

(兩種方案,任選擇一種即可)
故答案為:方案為:①作圓塊的內(nèi)接△ABC;
②用直尺量出邊長a,用量角器量出對角A.
③用正弦定理求出直徑:2R=
a
sinA
點評:此題屬于方案設(shè)計題,涉及的知識有正弦定理,余弦定理,以及特殊角的三角函數(shù)值,此類題限制測量工具,比如只有有刻度的直尺以及量角器,要求學生設(shè)計一種切實可行的測量方法,從而由測量出的數(shù)據(jù)利求出圓塊的直徑,此類題的答案往往不唯一,只有滿足條件,求出直徑即可.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(1)現(xiàn)有一個破損的圓塊(如圖1),只給出一把帶有刻度的直尺和一個量角器,請你設(shè)計一種方案,求出這個圓塊的直徑的長度.
(2)如圖2,已知△ABC三個角,A,B,C滿足sin2B+sin2C-sin2A=sinB•sinC,AD是△ABC外接圓直徑,CD=2,BD=3,求∠CAB和AD的長.

查看答案和解析>>

科目:高中數(shù)學 來源:2007-2008學年山東省臨沂市臨沭一中高二(上)月考數(shù)學試卷(解析版) 題型:填空題

如圖是一個破損的圓塊,只給出一把帶有刻度的直尺和一個量角器,請給出計算這個圓塊直徑長度的一種方案.
   
   
   

查看答案和解析>>

同步練習冊答案