13.如圖,已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,點A(0,$\sqrt{3}$)和點P都在橢圓C1上,橢圓C2方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=4.
(1)求橢圓C1的方程;
(2)過P作橢圓C1的切線l交橢圓C2于M,N兩點,過P作射線PO交橢圓C2于Q點,設$\overrightarrow{OQ}$=λ$\overrightarrow{OP}$;
(i)求λ的值;
(ii)求證:△QMN的面積為定值,并求出這個定值.

分析 (1)由橢圓離心率和點P在橢圓上,求出a,b,由此能求出橢圓C1的方程.
(2)(i)設P(m,n),則由$\overrightarrow{OQ}$=λ$\overrightarrow{OP}$得:Q(λm,λn),由P在橢圓C1上,能求出λ的值.
設切線l的方程為:y=kx+t,與橢圓聯(lián)立,得:(4k2+3)x2+8ktx+4t2-12=0,由此利用根的判別式、韋達定理,弦長公式、點到直線距離公式,能證明△QMN的面積為定值,這個定值為18.

解答 解:(1)∵橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,點A(0,$\sqrt{3}$)和點P都在橢圓C1上,
∴e=$\frac{1}{2}$,∴a2=4c2=4a2-4b2,∴3a2=4b2,又由題意知:b=$\sqrt{3}$,∴a2=4,
∴橢圓C1的方程為:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$.…(4分)
(2)(i)設P(m,n),則由$\overrightarrow{OQ}$=λ$\overrightarrow{OP}$得:Q(λm,λn),
∵Q在橢圓C2上,∴$\frac{{λ}^{2}{m}^{2}}{4}+\frac{{λ}^{2}{n}^{2}}{3}$=4
λ2($\frac{{m}^{2}}{4}$+$\frac{{n}^{2}}{3}$)=4,∵P在橢圓C1上,∴$\frac{{m}^{2}}{4}+\frac{{n}^{2}}{3}$=1,∴λ2=4,又∵λ<0,∴λ=-2,…(7分)
證明:(ii)設切線l的方程為:y=kx+t
聯(lián)立方程組:$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\\{y=kx+t}\end{array}\right.$,聯(lián)立并消元整理得:(4k2+3)x2+8ktx+4t2-12=0,
△=48(4k2+3-t2)=0,∴4k2+3=t2,…②
聯(lián)立方程組:$\left\{\begin{array}{l}{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1}\\{y=kx+t}\end{array}\right.$,消元整理得:(16k2+12)x2+32ktx+16t2-16×12=0,…①
設M(x1,y1),N(x2,y2),則x1,x2是方程①的兩個解,由韋達定理得:
x1+x2=$\frac{-32kt}{16{k}^{2}+12}$,x1x2=$\frac{16{t}^{2}-16×2}{16{k}^{2}+12}$,
|MN|=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{1+{k}^{2}}•\frac{16\sqrt{3}•\sqrt{16{k}^{2}+12-{t}^{2}}}{16{k}^{2}+12}$=$\sqrt{1+{k}^{2}}$•$\frac{16\sqrt{3}•\sqrt{12{k}^{2}+9}}{16{k}^{2}+12}$=$\sqrt{1+{k}^{2}}$•$\frac{12}{\sqrt{4{k}^{2}+3}}$,
設O到直線MN的距離為d1,Q到直線MN的距離為d2,則由(i)知:d2=3d1
d2=3d1=$\frac{3t}{\sqrt{1+{k}^{2}}}$,由②知:t=$\sqrt{4{k}^{2}+3}$,∴d2=$\frac{3\sqrt{4{k}^{2}+3}}{\sqrt{1+{k}^{2}}}$,
∴S△QMN=$\frac{1}{2}$•|MN|•d2=$\frac{1}{2}$•$\sqrt{1+{k}^{2}}$•$\frac{12}{\sqrt{4{k}^{2}+3}}$•$\frac{3\sqrt{4{k}^{2}+3}}{\sqrt{1+{k}^{2}}}$=18
即△QMN的面積為定值,這個定值為18.…(12分)

點評 本題考查橢圓方程的求法,考查實數(shù)值的求法,考查三角形面積為定值的證明,是中檔題,解題時要認真審題,注意根的判別式、韋達定理,弦長公式、點到直線距離公式的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=ln(x+1),g(x)=-x2-ax.
(1)若a=-2,設函數(shù)F(x)=$\left\{\begin{array}{l}{g(x),x≤0}\\{f(x),x>0}\end{array}\right.$,若|F(x)|≥mx恒成立,求m的取值
(2)若函數(shù)G(x)=xf(x-1)+ag(x)+a2x有兩個極值點,x1,x2(x1<x2),求證:G(x1)<0,G(x2)>-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.若x,y滿足約束條件$\left\{\begin{array}{l}3x-y-6≤0\\ x-y≥0\\ x+y-2≥0\end{array}\right.$,則z=x-2y的最大值為2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知圓C的方程為(x-1)2+y2=1,P是橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1上一點,過P作圓的兩條切線,切點為A,B,則$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范圍為( 。
A.[$\frac{3}{2}$,+∞)B.[2$\sqrt{2}$-3,+∞)C.[2$\sqrt{2}$-3,$\frac{56}{9}$]D.[$\frac{3}{2}$,$\frac{56}{9}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.橢圓M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),A為長軸的一個頂點,B為短軸的一個頂點,F(xiàn)為右焦點,且AB⊥BF,則橢圓M的離心率e為$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.執(zhí)行如圖的程序框圖,若輸入1,2,3,則輸出的數(shù)依次是1,2,3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.若AB為過橢圓$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1中心的線段,點A、B為橢圓上的點,F(xiàn)1,F(xiàn)2分別為橢圓的兩個焦點,則四邊形F1AF2B面積的最大值是8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設P,Q分別為圓x2+(y-3)2=5和橢圓$\frac{x^2}{10}$+y2=1上的點,則P,Q兩點間的最大距離是( 。
A.2$\sqrt{5}$B.$\sqrt{19}$+$\sqrt{2}$C.4+$\sqrt{5}$D.3$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.定義域為[a,b]的函數(shù)y=f(x)圖象的兩個端點為A、B,M(x,y)是f(x)圖象上任意一點,其中x=λa+(1-λ)b,λ∈[0,1].已知向量$\overrightarrow{ON}$=$λ\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$,若不等式|$\overrightarrow{MN}$|≤k恒成立,則稱函數(shù)f(x)在[a,b]上“k階線性近似”,若函數(shù)y=x-$\frac{2}{x}$在[1,2]上“k階線性近似”,則實數(shù)k的取值范圍為( 。
A.[$\sqrt{2}$-1,+∞)B.[$\sqrt{2}$+1,+∞)C.[3-2$\sqrt{2}$,+∞)D.[3+2$\sqrt{2}$,+∞)

查看答案和解析>>

同步練習冊答案