若集合A={x∈R||x+1|+|x-2|≤5},非空集合B={x∈R|2a≤x≤a+3},且B⊆A,則實數(shù)a的取值范圍是( 。
A、(0,+∞)
B、[-1,+∞)
C、(-1,0)
D、[-1,0]
考點:集合的包含關(guān)系判斷及應(yīng)用
專題:集合
分析:解絕對值不等式求出A,進而根據(jù)非空集合B={x∈R|2a≤x≤a+3}滿足B⊆A,構(gòu)造關(guān)于a的不等式組,解不等式組可得答案.
解答: 解:∵集合A={x∈R||x+1|+|x-2|≤5}=[-2,3],
由集合B不為空集可得2a≤a+3,即a≤3時,
由B⊆A得
2a≥-2
a+3≤3
,
解得a∈[-1,0],
故選:D.
點評:本題考查的知識點是集合的包含關(guān)系判斷及應(yīng)用,其中根據(jù)集合包含的定義,構(gòu)造關(guān)于a的不等式組,是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給定區(qū)域D:
x+4y≥4
x+y≤4
x+y≥2
x≥0
,令點集T={(x0,y0)∈D|x0,y0∈Z,(x0,y0)是z=x+y在D上取得最大值或最小值的點},則T中的點共確定
 
個不同的三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)平面向量
am
=(m,1),
bn
=(2,n),其中m,n∈{1,2,3,4}.記“使得
am
⊥(
am
-
bn
)成立的(m,n)”為事件A,則事件A發(fā)生的概率為(  )
A、
1
2
B、
1
4
C、
1
8
D、
1
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示,其中正視圖是正三角形,則幾何體的外接球的表面積為( 。
A、
3
B、
16π
3
C、
48π
3
D、
64π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列有關(guān)命題的說法正確的是( 。
A、命題“若x2=4,則x=2”的否命題為:“若x2=4,則x≠2”
B、“x=2”是“x2-6x+8=0”的必要不充分條件
C、命題“若x=y,則cosx=cosy”的逆否命題為真命題
D、命題“存在x∈R,使得x2+x+3>0”的否定是:“對于任意的x∈R,均有x2+x+3<0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F為拋物線y2=8x的焦點,A,B,C為該拋物線上三點,若
FA
+
FB
+
FC
=
0
,則|
FA
|+|
FB
|+|
FC
|=( 。
A、6B、9C、12D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平行四邊形ABCD中,
AD
=(2,8),
AB
=(-3,4),則
AC
的坐標為(  )
A、(-1,-12)
B、(-1,12)
C、(1,-12)
D、(1,12)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若變量x,y滿足
y≤1
x+y≥0
x-y-2≤0
,實數(shù)z是2x和-4y的等差中項,則z的最大值等于( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列關(guān)系正確的是(  )
A、1∉{0,1}
B、1∈{0,1}
C、1⊆{0,1}
D、{1}∈{0,1}

查看答案和解析>>

同步練習(xí)冊答案