已知圓x2+y2=1與x軸的兩個(gè)交點(diǎn)為A、B,若圓內(nèi)的動(dòng)點(diǎn)P使|PA|、|PO|、|PB|成等比數(shù)列,則
PA
PB
的取值范圍為( 。
A、(0,
1
2
]
B、[-
1
2
,0)
C、(-
1
2
,0)
D、[-1,0)
分析:先設(shè)P(x,y) A(-1,0),B(1,0)分別表示出
PA
PB
,
PO
,根據(jù)把
PA
,
PB
代入|PA|•|PB|=PO2整理可得x2-y2=
1
2
可知點(diǎn)P的軌跡為雙曲線,通過與圓的方程聯(lián)立即可求得它們的交點(diǎn),得x2=
3
4
,但P(x,y)在圓內(nèi),故對(duì)P,只能x2
3
4
,又根據(jù)x2-y2=
1
2
可知x2>=
1
2
,進(jìn)而可得的x2范圍,設(shè)z=
PA
PB
=x2-1+y2,把x2-y2=
1
2
代入z,進(jìn)而可得答案.
解答:解:設(shè)P(x,y) A(-1,0),B(1,0)
PA
=(-1-x,-y)
PB
=(1-x,-y)
PO
=(-x,-y)
設(shè)z=PA•PB=x2-1+y2.(1)
又∵|PA|•|PB|=PO2
∴[(1+x)2+y2]•[(1-x)2+y2]=(x2+y22
整理得:x2-y2=
1
2
(2)
這是P點(diǎn)滿足的條件 (其圖形為一雙曲線)
求它與圓的交點(diǎn):
即,解方程組:
x2+y2=1.(3)
x2-y2=
1
2
(4)
得x2=
3
4
(5)
(但P(x,y)在圓內(nèi),故對(duì)P,只能x2
3
4

又由(2)知x2>=
1
2
,
1
2
≤x2
3
4
(6)
由(2)還得:y2=x2-
1
2

代入(1),得
z=2x2-
3
2
(7)
由((6),(7)知,z的取值范圍為
為:[-
1
2
,0)
故選B
點(diǎn)評(píng):本題主要考查了等比數(shù)列和平面向量的性質(zhì).要特別把握好平面向量的運(yùn)算法則.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2+y2=1,點(diǎn)A(1,0),△ABC內(nèi)接于圓,且∠BAC=60°,當(dāng)B、C在圓上運(yùn)動(dòng)時(shí),BC中點(diǎn)的軌跡方程是( 。
A、x2+y2=
1
2
B、x2+y2=
1
4
C、x2+y2=
1
2
(x<
1
2
D、x2+y2=
1
4
(x<
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2+y2=1與拋物線y=x2+h有公共點(diǎn),則實(shí)數(shù)h的取值范圍是
h∈[-
5
4
,1]
h∈[-
5
4
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2+y2=1與x軸的兩個(gè)交點(diǎn)為A,B,若圓內(nèi)的動(dòng)點(diǎn)P使
PA
2
,
PO
2
,
PB
2
成等比數(shù)列(O為坐標(biāo)原點(diǎn)),則
PA
PB
的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2+y2=1和直線y=2x+b相交于A,B兩點(diǎn),且OA,OB是x軸正方向沿逆時(shí)針分別旋轉(zhuǎn)α,β角而得,則cos(α+β)的值為( 。
A、
b+3
b2+5
B、
3
5
C、
3
b2+5
D、
3
5
|b|+15
5b2+25

查看答案和解析>>

同步練習(xí)冊(cè)答案