設(shè)、分別為雙曲線的左、右焦點.若在雙曲線右支上存在點,滿足,且到直線的距離等于雙曲線的實軸長,則該雙曲線的漸近線方程為( 。

A.        B.

C.        D.

 

【答案】

C

【解析】

試題分析:依題意|PF2|=|F1F2|,可知三角形PF2F1是一個等腰三角形,F(xiàn)2在直線PF1的投影是其中點,由勾股定理知,可知|PF1|=2 =4b根據(jù)雙曲定義可知4b-2c=2a,整理得c=2b-a,代入c2=a2+b2整理得3b2-4ab=0,求得 = ∴雙曲線漸進線方程為y=±x,即4x±3y=0故選C

考點:本題主要考查了直線與雙曲線的位置關(guān)系的運用。

點評:解決該試題的關(guān)鍵是利用題設(shè)條件和雙曲線性質(zhì)在三角形中尋找等量關(guān)系,得出a與b之間的等量關(guān)系,可知答案。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2013屆浙江省高二下學期期末數(shù)學試卷(解析版) 題型:選擇題

設(shè)、分別為雙曲線的左、右焦點.若在雙曲線右支上存在點,滿足,且到直線的距離等于雙曲線的實軸長,則該雙曲線的漸近線方程為(    )

A、       B、 

C、       D、

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年重慶市七區(qū)高三第一次調(diào)研測試數(shù)學理卷 題型:選擇題

設(shè)、分別為雙曲線的左、右焦點.若在雙曲線右支上存在點,滿足,且點的橫坐標為為半焦距),則該雙曲線的離心率為(       )

A.            B.                  C.2            D.2

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年湖南省高二上學期質(zhì)量檢測數(shù)學理卷 題型:選擇題

設(shè)、分別為雙曲線的左、右焦點,若在雙曲線右支上存在點,滿足,且到直線的距離等于雙曲線的實軸長,則該雙曲線的漸近線方程為 (      )

(A)  (B)         (C)  (D)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆陜西省高二上學期期中文科數(shù)學試卷 題型:選擇題

設(shè)、分別為雙曲線的左、右焦點,若在雙曲線右支上存在點,滿足,且到直線的距離等于雙曲線的實軸長,則該雙曲線的離心率為(    )

A.           B.         C.        D.

 

查看答案和解析>>

同步練習冊答案