設(shè)、分別為雙曲線的左、右焦點.若在雙曲線右支上存在點,滿足,且到直線的距離等于雙曲線的實軸長,則該雙曲線的漸近線方程為( 。
A. B.
C. D.
C
【解析】
試題分析:依題意|PF2|=|F1F2|,可知三角形PF2F1是一個等腰三角形,F(xiàn)2在直線PF1的投影是其中點,由勾股定理知,可知|PF1|=2 =4b根據(jù)雙曲定義可知4b-2c=2a,整理得c=2b-a,代入c2=a2+b2整理得3b2-4ab=0,求得 = ∴雙曲線漸進線方程為y=±x,即4x±3y=0故選C
考點:本題主要考查了直線與雙曲線的位置關(guān)系的運用。
點評:解決該試題的關(guān)鍵是利用題設(shè)條件和雙曲線性質(zhì)在三角形中尋找等量關(guān)系,得出a與b之間的等量關(guān)系,可知答案。
科目:高中數(shù)學 來源:2013屆浙江省高二下學期期末數(shù)學試卷(解析版) 題型:選擇題
設(shè)、分別為雙曲線的左、右焦點.若在雙曲線右支上存在點,滿足,且到直線的距離等于雙曲線的實軸長,則該雙曲線的漸近線方程為( )
A、 B、
C、 D、
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年重慶市七區(qū)高三第一次調(diào)研測試數(shù)學理卷 題型:選擇題
設(shè)、分別為雙曲線的左、右焦點.若在雙曲線右支上存在點,滿足,且點的橫坐標為(為半焦距),則該雙曲線的離心率為( )
A. B. C.2 D.2
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年湖南省高二上學期質(zhì)量檢測數(shù)學理卷 題型:選擇題
設(shè)、分別為雙曲線的左、右焦點,若在雙曲線右支上存在點,滿足,且到直線的距離等于雙曲線的實軸長,則該雙曲線的漸近線方程為 ( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆陜西省高二上學期期中文科數(shù)學試卷 題型:選擇題
設(shè)、分別為雙曲線的左、右焦點,若在雙曲線右支上存在點,滿足,且到直線的距離等于雙曲線的實軸長,則該雙曲線的離心率為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com