【題目】某中學(xué)團(tuán)委組織了紀(jì)念抗日戰(zhàn)爭勝利73周年的知識競賽,從參加競賽的學(xué)生中抽出60名學(xué)生,將其成績(均為整數(shù))分成六段,,后,畫出如圖所示的部分頻率分布直方圖.觀察圖形給出的信息,回答下列問題:

1)求第四組的頻率,并補(bǔ)全這個頻率分布直方圖;

2)估計這次競賽的及格率(60分及以上為及格)和平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表)

【答案】10.3 271

【解析】

1利用頻率分布直方圖中的各組的頻率和等于1,求出第四小組的頻率,求出縱坐標(biāo),補(bǔ)全這個頻率分布直方圖即可.

2求出60及以上的分?jǐn)?shù)所在的第三、四、五、六組的頻率和;利用組中值估算抽樣學(xué)生的平均值為各組的中點(diǎn)乘以各組的頻率和為平均值.

解:(1)因?yàn)楦鹘M的頻率和等于1,

故第四組的頻率:

頻率分布直方圖第四小組的縱坐標(biāo)是:,

則頻率分布直方圖如下圖所示:

2)依題意,60及以上的分?jǐn)?shù)所在的第三、四、五、六組,

頻率和為,

所以,抽樣學(xué)生成績的合格率是,

利用組中值估算抽樣學(xué)生的平均分為:

,

所以估計這次考試的平均分是71.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 已知ABC的三個內(nèi)角A,B,C的對邊分別為ab,c,向量m,n,且mn的夾角為.

(1)求角C;

(2)已知c,SABC,求ab的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,為坐標(biāo)原點(diǎn),是拋物線上異于的兩點(diǎn).

(1)求拋物線的方程;

(2)若直線的斜率之積為,求證:直線過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,B1B2是橢圓的短軸端點(diǎn),P是橢圓上異于點(diǎn)B1B2的一動點(diǎn).當(dāng)直線PB1的方程為時,線段PB1的長為

1)求橢圓的標(biāo)準(zhǔn)方程;

2設(shè)點(diǎn)Q滿足: .求證:PB1B2QB1B2的面積之比為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形CDEF為正方形,四邊形ABCD為梯形,,,平面ABCD

BE與平面EAC所成角的正弦值;

線段BE上是否存在點(diǎn)M,使平面平面DFM?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,∠A,∠B,∠C所對邊分別為a,b,c,且bsinC+2csinBcosA0

1)求∠A大小;

2)若a2,c2,求△ABC的面積S的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中華人民共和國道路交通安全法》第47條的相關(guān)規(guī)定:機(jī)動車行經(jīng)人行橫道時,應(yīng)當(dāng)減速慢行;遇行人正在通過人行橫道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國道路交通安全法》 第90條規(guī)定:對不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個月內(nèi)駕駛員不“禮 讓斑馬線”行為統(tǒng)計數(shù)據(jù):

(1)請利用所給數(shù)據(jù)求違章人數(shù)與月份之間的回歸直線方程

(2)預(yù)測該路口 9月份的不“禮讓斑馬線”違章駕駛員人數(shù);

(3)若從表中3、4月份分別抽取4人和2人,然后再從中任選2 人進(jìn)行交規(guī)調(diào)查,求抽到的兩人恰好來自同一月份的概率.

參考公式: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在實(shí)數(shù)集上的函數(shù),把方程稱為函數(shù)的特征方程,特征方程的兩個實(shí)根,稱為的特征根.

1)討論函數(shù)的奇偶性,并說明理由;

2)求表達(dá)式;

3)把函數(shù),的最大值記作、最小值記作,令,若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知遞增數(shù)列的前項和為,且滿足,.

1)求證:數(shù)列為等差數(shù)列;

2)試求所有的正整數(shù),使得為整數(shù);

3)證明:.

查看答案和解析>>

同步練習(xí)冊答案