已知f(a)=
1
0
[2a2-(lna)x3]dx(a>0),求f(x)的最小值.
考點:定積分
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:首先利用定積分求出f(a),然后求導(dǎo),進(jìn)一步求最小值.
解答: 解:f(a)=
1
0
[2a2-(lna)x3]dx=[2a2x-
1
4
(lna)x4]|
 
1
0
=2a2-
1
4
lna,
f′(a)=4a-
1
4a
,令f′(a)=0,則a=
1
4

a∈(0,
1
4
)時,f′(a)<0,f(a)為減函數(shù);
a∈(
1
4
,+∞)時,f′(a)>0,f(a)為增函數(shù).
所以f(x)的最小值為f(
1
4
)=2×
1
16
-
1
4
ln
1
4
=
1
8
+
1
2
ln2
點評:本題考查了定積分的計算以及利用導(dǎo)數(shù)求函數(shù)的最小值,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(3cosx,
3
sinx),
n
=(2cosx,-2cosx),函數(shù)f(x)=
m
n

(1)求f(x)的最小正周期和對稱軸方程;
(2)在銳角△ABC中,角A,B,C的對邊分別為a,b,c,若f(B)=0且b=2,cosA=
4
5
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知遞增的等比數(shù)列{an}前三項之積為8,且這三項分別加上1、2、2后又成等差數(shù)列.
(1)求等比數(shù)列{an}的通項公式;
(2)若不等式an2+2nan-k≥0對一切n∈N*恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=
1
x
在x=a處的切線的傾角為
4
,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1=
1
3
an+n,n為奇數(shù)
an-3n,n為偶數(shù)

(I)求證:數(shù)列{a2n-
3
2
}是等比數(shù)列;
(II)若Sn是數(shù)列{an}的前n項和,求滿足Sn>0的所有正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①命題“?x∈R,x2+x+1>0”的否定是“?x0∈R,x02+x0+1<0”
②設(shè)回歸直線方程
y
=2-3x,當(dāng)變量x增加一個單位時,
y
平均增加3個單位
③已知sin(θ-
π
6
)=
1
3
,則cos(
π
3
-2θ)=
7
9

其中正確命題的個數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,邊長為2的正方形ABCD繞AB邊所在直線旋轉(zhuǎn)一定的角度(小于180°)到ABEF的位置.
(Ⅰ)求證:CE∥平面ADF;
(Ⅱ)若K為線段BE上異于B,E的點,CE=2
2
.設(shè)直線AK與平面BDF所成角為φ,當(dāng)30°≤φ≤45°時,求BK的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|cosθ|=
3
5
,且
2
<θ<3π,求sin
θ
2
、cos
θ
2
、tan
θ
2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的頂點B(-1,-3),AB邊上的高線CE所在直線的方程為x-3y-1=0,BC邊上中線AD所在直線的方程為8x+9y-3=0.
(1)求直線AC的方程;
(2)求三角形面積.

查看答案和解析>>

同步練習(xí)冊答案