已知正項(xiàng)等比數(shù)列{an}中,2a1+3a2=1,且a32=9a2a6,Sa為其前n項(xiàng)和,則Sn=
 
考點(diǎn):等比數(shù)列的前n項(xiàng)和
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:設(shè)出等比數(shù)列的公比,然后直接由已知列式求出首項(xiàng)和公比,代入等比數(shù)列的前n項(xiàng)和公式得答案.
解答: 解:設(shè)等比數(shù)列{an}的公比為q(q>0),
由2a1+3a2=1,且a32=9a2a6,得:
2a1+3a1q=1
(a1q2)2=9a1q•a1q5
,解得:
a1=
1
3
q=
1
3

Sn=
1
3
×[1-(
1
3
)n]
1-
1
3
=
1
2
[1-(
1
3
)n]

故答案為:
1
2
[1-(
1
3
n].
點(diǎn)評(píng):本題考查了等比數(shù)列的前n項(xiàng)和,考查了計(jì)算能力,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x4+ax3+bx+c(a,b,c∈R),g(x)=f′(x)且g(0)=g(1).
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若任意x1、x2∈[0,1]且x2>x1,求證:|g(x2)-g(x1)|<8|x2-x1|;
(Ⅲ)當(dāng)b≤
16
3
9
時(shí),請(qǐng)判斷曲線(xiàn)f(x)的所有切線(xiàn)中,斜率λ為正數(shù)時(shí)切線(xiàn)的條數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3+
1
2
ax2+bx+c的兩個(gè)極值點(diǎn)分別為x1和x2,有f(x1)=x2,f(x2)=x1,其中x1≠x2,則函數(shù)g(x)=f2(x)+af(x)+b的零點(diǎn)個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是各項(xiàng)均不為0的等差數(shù)列,Sn為其前n項(xiàng)和,且滿(mǎn)足an2=S2n-1(n∈N+).若不等式
λ
an+1
n+8•(-1)n
n
對(duì)任意的n∈N+恒成立,則實(shí)數(shù)λ的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)C:y2=4x,F(xiàn)為其焦點(diǎn),A(3,2),點(diǎn)P是拋物線(xiàn)上的動(dòng)點(diǎn),當(dāng)|PA|+|PF|取得最小值時(shí),P點(diǎn)的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|y=ln(3-x)},則A∩N=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若等比數(shù)列{an}的前n項(xiàng)和Sn=2•3n-2+a,等差數(shù)列{bn}的前n項(xiàng)和Tn=2n2-n+b,則a+b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、
11
3
6
B、
3
C、
5
3
3
D、
4
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若復(fù)數(shù)Z滿(mǎn)足(3,-4i)Z=|4+3i|,則Z的共軛復(fù)數(shù)的虛部為( 。
A、4
B、
4
5
C、-4
D、-
4
5

查看答案和解析>>

同步練習(xí)冊(cè)答案