分析 (1)以C為原點,CB為x軸,CA為y軸,CC1為z軸,建立空間直角坐標系,利用向量法能求出AC1與B1C所成角的余弦值.
(2)求出平面A1BC的法向量和平面ABC的法向量,利用向量法能求出二面角A1-BC-A的正弦值.
解答 解:(1)以C為原點,CB為x軸,CA為y軸,CC1為z軸,建立空間直角坐標系,
則A(0,3,0),C1(0,0,3),B1(4,0,3),C(0,0,0),
$\overrightarrow{A{C}_{1}}$=(0,-3,3),$\overrightarrow{{B}_{1}C}$=(-4,0,-3),
設AC1與B1C所成角為θ,
則cosθ=$\frac{|\overrightarrow{A{C}_{1}}•\overrightarrow{{B}_{1}C}|}{|\overrightarrow{A{C}_{1}}|•|\overrightarrow{{B}_{1}C}|}$=$\frac{9}{3\sqrt{2}•5}$=$\frac{3\sqrt{2}}{10}$.
∴AC1與B1C所成角的余弦值為$\frac{3\sqrt{2}}{10}$.
(2)A1(0,3,3),B(4,0,0),$\overrightarrow{C{A}_{1}}$=(0,3,3),$\overrightarrow{CB}$=(4,0,0),
設平面A1BC的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{C{A}_{1}}=3y+3z=0}\\{\overrightarrow{n}•\overrightarrow{CB}=4x=0}\end{array}\right.$,取y=1,得$\overrightarrow{n}$=(0,1,-1),
平面ABC的法向量$\overrightarrow{m}$=(0,0,1),
設二面角A1-BC-A的平面角為θ,
則cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$,∴sin$θ=\frac{\sqrt{2}}{2}$,
∴二面角A1-BC-A的正弦值為$\frac{\sqrt{2}}{2}$.
點評 本題考查異面直線所成角的余弦值的求法,考查二面角的正弦值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com