已知關(guān)于x的函數(shù)f(x)=x2-2
b
x+a2,若點(diǎn)(a,b)是區(qū)域
x+y-2≤0
x>0
y>0
內(nèi)任意一點(diǎn),則函數(shù)f(x)在R上有零點(diǎn)的概率為( 。
A、
2
3
B、
1
2
C、
7
12
D、
5
12
考點(diǎn):簡(jiǎn)單線性規(guī)劃,幾何概型
專題:概率與統(tǒng)計(jì)
分析:根據(jù)條件求出函數(shù)有零點(diǎn)的取值范圍,作出不等式組,利用幾何概型的概率公式,求出相應(yīng)的面積即可得到結(jié)論.
解答: 解:若函數(shù)f(x)在R上有零點(diǎn),
則滿足判別式△=4b-4a2≥0,即b>a2
作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
則△OAC的面積S=
1
2
×2×2=2
,
y=x2
x+y-2=0
,解得
x=1
y=1
,即B(1,1),
則陰影部分的面積S=
1
0
(2-x-x2)dx
=(2x-
1
2
x2
-
1
3
x3
)|
 
1
0
=2-
1
2
-
1
3
=
7
6

∴根據(jù)幾何概型的概率公式可知函數(shù)f(x)在R上有零點(diǎn)的概率為
7
6
2
=
7
12
,
故選:C
點(diǎn)評(píng):本題主要考查幾何概型的概率計(jì)算,以及利用積分求區(qū)域面積,利用數(shù)形結(jié)合是解決本題的關(guān)鍵,本題涉及的知識(shí)點(diǎn)較多,綜合性較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線x+
3
y+1=0的傾斜角的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)某個(gè)不透明的袋中裝有除顏色外其它特征完全相同的8個(gè)乒乓球(其中3個(gè)是白色球,5個(gè)是黃色球),小李同學(xué)從袋中一個(gè)一個(gè)地摸乒乓球(每次摸出球后不放回),當(dāng)摸到的球是黃球時(shí)停止摸球.用隨機(jī)變量ξ表示小李同學(xué)首先摸到黃色乒乓球時(shí)的摸球次數(shù),則隨機(jī)變量ξ的數(shù)學(xué)期望值Eξ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知i是虛數(shù)單位,x是實(shí)數(shù),若復(fù)數(shù)(1+xi)(2+i)是純虛數(shù),則x=( 。
A、2
B、
1
2
C、-
1
2
D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題p:a≥1;命題q:關(guān)于x的實(shí)系數(shù)方程x2-2
2
x+a=0有虛數(shù)解,則p是q的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,2),
b
=(x,y),則“x=-4且y=2”是“
a
b
”的(  )
A、充分而不必要條件
B、必要而不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=2sin(
π
6
-2x)(其中0≤x≤π)為增函數(shù)的區(qū)間是( 。
A、(0,
π
3
B、(
π
12
,
12
C、(
π
3
,
6
D、(
6
,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(1,2)在橢圓
x2
16
+
y2
12
=1內(nèi),點(diǎn)F的坐標(biāo)為(2,0),P為橢圓上一點(diǎn),試求當(dāng)|PA|+2|PF|取得最小值時(shí)P點(diǎn)的坐標(biāo),并求出|PA|+2|PF|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):
2sin50°+sin80°(1+
3
tan10°)
cos5°

查看答案和解析>>

同步練習(xí)冊(cè)答案