【題目】若無窮數(shù)列滿足:對任意兩個正整數(shù),與至少有一個成立,則稱這個數(shù)列為“和諧數(shù)列”.
(Ⅰ)求證:若數(shù)列為等差數(shù)列,則為“和諧數(shù)列”;
(Ⅱ)求證:若數(shù)列為“和諧數(shù)列”,則數(shù)列從第項起為等差數(shù)列;
(Ⅲ)若是各項均為整數(shù)的“和諧數(shù)列”,滿足,且存在使得,,求p的所有可能值.
【答案】(Ⅰ)見解析 (Ⅱ) 見解析(Ⅲ) .
【解析】
(I)利用等差數(shù)列的定義,證得等差數(shù)列為“和諧數(shù)列”.
(II)利用等差數(shù)列的定義,通過證明,證得數(shù)列從第項起為等差數(shù)列.
(III)對依次進行驗證,當時,結合(II)的結論和等差數(shù)列前項和公式進行列式,求得的可能取值.
(Ⅰ)證明:因為數(shù)列為等差數(shù)列,
所以對任意兩個正整數(shù),有 ,
所以 .
所以 數(shù)列為“和諧數(shù)列”.
(Ⅱ)證明:因為數(shù)列為“和諧數(shù)列”,
所以 當,時,只能成立, 不成立.
所以 ,即.
當,時,也只能成立,不成立.
所以 ,,,
即,
所以.
令,則數(shù)列滿足.
所以,數(shù)列從第3項起為等差數(shù)列.
(Ⅲ)解:①若,則,與矛盾,不合題意.
②若,則,,但,不合題意
③若,則,,由,得,
此時數(shù)列為:,符合題意.
④若,設,
則.
所以,
即 .
因為,所以.
所以不合題意.
所以.
因為p為整數(shù),所以為整數(shù),所以.
綜上所述,p的所有可能值為.
科目:高中數(shù)學 來源: 題型:
【題目】定義:圓心到直線的距離與圓的半徑之比為直線關于圓的距離比.
(1)設圓求過(2,0)的直線關于圓的距離比的直線方程;
(2)若圓與軸相切于點(0,3)且直線= 關于圓的距離比,求此圓的的方程;
(3)是否存在點,使過的任意兩條互相垂直的直線分別關于相應兩圓的距離比始終相等?若存在,求出相應的點點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,平面,, .,,,是的中點.
(Ⅰ)證明:⊥平面;
(Ⅱ)若二面角的余弦值是,求的值;
(Ⅲ)若,在線段上是否存在一點,使得⊥. 若存在,確定點的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“水是生命之源”,但是據(jù)科學界統(tǒng)計可用淡水資源僅占地球儲水總量的,全世界近人口受到水荒的威脅.某市為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸):一位居民的月用水量不超過的部分按平價收費,超出的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖中的值;
(2)設該市有60萬居民,估計全市居民中月均用水量不低于2.5噸的人數(shù),并說明理由;
(3)若該市政府希望使的居民每月的用水不按議價收費,估計的值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)經(jīng)統(tǒng)計,在某儲蓄所一個營業(yè)窗口排隊等候的人數(shù)及相應概率如下:
排隊人數(shù) | 0 | 1 | 2 | 3 | 4 | 5人及5人以上 |
概率 |
求至少3人排隊等候的概率是多少?
(2)在區(qū)間上隨機取兩個數(shù)m,n,求關于x的一元二次方程有實根的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中正確的是( )
A.先把高二年級的名學生編號:到,再從編號為到的學生中隨機抽取名學生,其編號為,然后抽取編號為的學生,這種抽樣方法是分層抽樣法
B.線性回歸直線不一定過樣本中心
C.若兩個隨機變量的線性相關性越強,則相關系數(shù)的值越接近于
D.若一組數(shù)據(jù),,,的平均數(shù)是,則該組數(shù)據(jù)的方差也是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com