三棱錐P-ABC的三條側(cè)棱兩兩垂直,Q為底面上一點(diǎn),Q到三個側(cè)面的距離分別為3、4、5,則PQ的長度為


  1. A.
    5
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    6
B
分析:由于三棱錐P-ABC的三條側(cè)棱兩兩垂直,Q為底面上一點(diǎn),故可以QP為對角線,以Q向三個側(cè)面所引垂線段為共一頂點(diǎn)三條棱,作長方體,共一頂點(diǎn)三條棱長分別為1,2,3,從而可求對角線的長,
解答:以QP為對角線,以Q向三個側(cè)面所引垂線段為共一頂點(diǎn)三條棱,作長方體,共一頂點(diǎn)三條棱長分別為1,2,3,
∴對角線QP=
故選B.
點(diǎn)評:本題以三棱錐為載體,考查學(xué)生空間想象能力,考查構(gòu)建長方體,求對角線長,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)三棱錐P-ABC的頂點(diǎn)P在平面ABC上的射影是H,給出以下命題:
①若PA,PB,PC兩兩互相垂直,則H是△ABC的垂心
②若∠ABC=90°,H是斜邊AC上的中點(diǎn),則PA=PB=PC
③若PA=PB=PC,則H是△ABC的外心
④若P到△ABC的三邊的距離相等,則H為△ABC的內(nèi)心
其中正確命題的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐P-ABC的三條側(cè)棱PA、PB、PC兩兩垂直,PA=1,PB=2,PC=3,且這個三棱錐的頂點(diǎn)都在同一個球面上,則這個球面的表面積為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐P-ABC中,給出下列四個命題:
①如果PA⊥BC,PB⊥AC,那么點(diǎn)P在平面ABC內(nèi)的射影是△ABC的垂心;
②如果點(diǎn)P到△ABC的三邊所在直線的距離都相等,那么點(diǎn)P在平面ABC內(nèi)的射影是△ABC的內(nèi)心;
③如果棱PA和BC所成的角為60?,PA=BC=2,E、F分別是棱PB、AC的中點(diǎn),那么EF=1;
④三棱錐P-ABC的各棱長均為1,則該三棱錐在任意一個平面內(nèi)的射影的面積都不大于
1
2

⑤如果三棱錐P-ABC的四個頂點(diǎn)是半徑為1的球的內(nèi)接正四面體的頂點(diǎn),則P與A兩點(diǎn)間的球面距離為π-arccos
1
3

其中正確命題的序號是
①④⑤
①④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•江西模擬)三棱錐P-ABC的高|PO|=2
2
,底面邊長分別為3,4,5,Q點(diǎn)在底邊上,且斜高PQ的數(shù)值為3,這樣的Q點(diǎn)最多有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在三棱錐P-ABC中,給出下列四個命題:
①如果PA⊥BC,PB⊥AC,那么點(diǎn)P在平面ABC內(nèi)的射影是△ABC的垂心;
②如果點(diǎn)P到△ABC的三邊所在直線的距離都相等,那么點(diǎn)P在平面ABC內(nèi)的射影是△ABC的內(nèi)心;
③如果棱PA和BC所成的角為60?,PA=BC=2,E、F分別是棱PB、AC的中點(diǎn),那么EF=1;
④三棱錐P-ABC的各棱長均為1,則該三棱錐在任意一個平面內(nèi)的射影的面積都不大于
1
2
;
⑤如果三棱錐P-ABC的四個頂點(diǎn)是半徑為1的球的內(nèi)接正四面體的頂點(diǎn),則P與A兩點(diǎn)間的球面距離為π-arccos
1
3

其中正確命題的序號是______.

查看答案和解析>>

同步練習(xí)冊答案