(本小題滿分15分)已知函數(shù).
(1)若函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/22/f/1h5nm4.png" style="vertical-align:middle;" />,求a的值;
(2)若函數(shù)在上是增函數(shù),求實(shí)數(shù)的取值范圍.
(1) a=-1或a=;(2)。
解析試題分析:(1)∵函數(shù)的值域?yàn)閇0,+∞),
∴Δ=16a2-4(2a+6)=0-----3分
⇒2a2-a-3=0⇒a=-1或a=.-----------------7分
(2)函數(shù)在上是單調(diào)遞增的,
要使在上是增函數(shù),只需
即所以實(shí)數(shù)的取值范圍為
考點(diǎn):二次函數(shù)的值域;二次函數(shù)的單調(diào)性。
點(diǎn)評(píng):我們研究二次函數(shù)的單調(diào)性和最值時(shí)一定要考慮它的開口方向。①最大(。┲担寒(dāng)a>0時(shí),函數(shù)圖象開口向上,y有最小值,,無最大值;當(dāng)a<0時(shí),函數(shù)圖象開口向下,y有最大值,,無最小值。②當(dāng)a>0時(shí),函數(shù)在區(qū)間上是減函數(shù),在上是增函數(shù);當(dāng)a<0時(shí),函數(shù)在區(qū)間上是減函數(shù),在上是增函數(shù)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)
已知函數(shù)f (x)=-ax3+x2+(a-1)x- (x>0),(aÎR).
(Ⅰ)當(dāng)0<a<時(shí),討論f (x)的單調(diào)性;
(Ⅱ)若f (x)在區(qū)間(a, a+1)上不具有單調(diào)性,求正實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)已知函數(shù),.
(Ⅰ)設(shè)(其中是的導(dǎo)函數(shù)),求的最大值;
(Ⅱ)求證: 當(dāng)時(shí),有;
(Ⅲ)設(shè),當(dāng)時(shí),不等式恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分) 已知函數(shù)f(x)=-1+2sinxcosx+2cos2x.
(1)求f(x)的單調(diào)遞減區(qū)間;
(2)求f(x)圖象上與原點(diǎn)最近的對(duì)稱中心的坐標(biāo);
(3)若角α,β的終邊不共線,且f(α)=f(β),求tan(α+β)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題12分)
(1)求時(shí)函數(shù)的解析式
(2)用定義證明函數(shù)在上是單調(diào)遞增
(3)寫出函數(shù)的單調(diào)區(qū)間
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分)已知函數(shù),.
(1)用定義證明:不論為何實(shí)數(shù)在上為增函數(shù);
(2)若為奇函數(shù),求的值;
(3)在(2)的條件下,求在區(qū)間[1,5]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知函數(shù),是的一個(gè)極值點(diǎn).
(1)求的單調(diào)遞增區(qū)間;
(2)若當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com