【題目】在直角坐標(biāo)系中,曲線C的參數(shù)方程為 (其中為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系中,直線的極坐標(biāo)方程為.

C的普通方程和直線的傾斜角;

設(shè)點(diǎn)(0,2),交于兩點(diǎn),求.

【答案】,

【解析】

試題分析:)由參數(shù)方程消去參數(shù)即得;由極坐標(biāo)方程化為直角坐標(biāo)方程,根據(jù)斜率即得傾斜角

)根據(jù)在直線上, 可設(shè)直線的參數(shù)方程代入橢圓方程化簡(jiǎn),根據(jù)一元二次方程根與系數(shù)的關(guān)系,利用參數(shù)的幾何意義求解.

試題解析:解法一:()由消去參數(shù),得,

,得,(*)

代入(*),化簡(jiǎn)得,

所以直線的傾斜角為

)由()知,點(diǎn)在直線上, 可設(shè)直線的參數(shù)方程為為參數(shù)),

為參數(shù)),

代入并化簡(jiǎn),得

設(shè)兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為,

,所以

所以

解法二:()同解法一.

)直線的普通方程為.

消去,

于是.

設(shè),則,所以.

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系xOy中,拋物線的焦點(diǎn)為F,過(guò)F的動(dòng)直線lM、N兩點(diǎn).

1)若l垂直于x軸,且線段MN的長(zhǎng)為1,求的方程;

(2)若,求線段MN的中點(diǎn)P的軌跡方程;

(3)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的上下兩個(gè)焦點(diǎn)分別為,過(guò)點(diǎn)軸垂直的直線交橢圓兩點(diǎn),的面積為,橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知為坐標(biāo)原點(diǎn),直線軸交于點(diǎn),與橢園交于兩個(gè)不同的點(diǎn),若存在實(shí)數(shù),使得,求的取值范圍,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的左、右焦點(diǎn)分別是、,離心率,過(guò)點(diǎn)的直線交橢圓、兩點(diǎn), 的周長(zhǎng)為16.

(1)求橢圓的方程;

(2)已知為原點(diǎn),圓 )與橢圓交于、兩點(diǎn),點(diǎn)為橢圓上一動(dòng)點(diǎn),若直線軸分別交于、兩點(diǎn),求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平行四邊形中,點(diǎn)邊的中點(diǎn),將沿折起,使點(diǎn)到達(dá)點(diǎn)的位置,且

(1)求證; 平面平面

(2)若平面和平面的交線為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高二年級(jí)舉行一次演講賽共有10位同學(xué)參賽,其中一班有3位,二班有2位,其它班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學(xué)恰好被排在一起(指演講序號(hào)相連),而二班的2位同學(xué)沒(méi)有被排在一起的概率為:(   )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓(常數(shù)),P是曲線C上的動(dòng)點(diǎn),M是曲線C的右頂點(diǎn),定點(diǎn)A的坐標(biāo)為.

1)若MA重合,求曲線C的焦距.

2)若,求的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)對(duì)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)在其圖象上存在不同的兩點(diǎn),,其坐標(biāo)滿足條件: 的最大值為0,則稱為“柯西函數(shù)”,則下列函數(shù):① :②:③:④.

其中為“柯西函數(shù)”的個(gè)數(shù)為( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步練習(xí)冊(cè)答案