已知函數(shù)f(x)=cos4x-sin4x.
(1)求f(
π
4
)
的值及f(x)的最大值;
(2)求f(x)的遞增區(qū)間.
考點:三角函數(shù)中的恒等變換應用,正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)易化簡得f(x)=cos2x,從而可求f(
π
4
)
的值及f(x)的最大值;
(2)利用正弦函數(shù)的單調(diào)性可求得f(x)的遞增區(qū)間.
解答: 解:(1)f(x)=(cos2x-sin2x)(cos2x+sin2x)=cos2x,
∴f(
π
4
)=cos
π
2
=0,f(x)的最大值為1…4分
(2)由2kπ-π≤2x≤2kπ(k∈Z),
得kπ-
π
2
≤x≤kπ(k∈Z),
∴f(x)的遞增區(qū)間是[kπ-
π
2
,kπ](k∈Z)…8分
點評:本題考查三角函數(shù)中的恒等變換應用,著重考查正弦函數(shù)的單調(diào)性,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若復數(shù)z滿足z(1+2i)=3-4i(i為虛數(shù)單位),則z的共軛復數(shù)是(  )
A、-1+2iB、-1-2i
C、1+2iD、1-2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙兩臺機床同時生產(chǎn)一種零件,10天中,兩臺機床每天出的次品數(shù)分別是:
第1天 第2天 第3天 第4天 第5天 第6天 第7天 第8天 第9天 第10天
0 1 0 2 2 0 3 1 2 4
2 3 1 1 0 2 1 1 0 1
(1)隨機選擇某一天進行檢查,求甲、乙兩臺機床出的次品數(shù)之和小于3的概率;
(2)分別計算這兩組數(shù)據(jù)的平均數(shù)與方差,并根據(jù)計算結(jié)果比較兩臺機床的性能.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

集合A={x|-2≤x≤5},B={x|k+1≤x≤2k-1},
(1)若B⊆A,求k的取值范圍;
(2)若B?A,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,且過點(0,-1).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過點M(2,0)的直線與橢圓C相交于兩點A、B,設P為橢圓上一點,且滿足
OA
+
OB
=t
OP
(其中O為坐標原點),求整數(shù)t的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,三棱柱ABC-A1B1C1中,∠CAA1=∠A1AB=∠BAC=90°,AB=AA1=1,AC=2.
(1)求證:A1B⊥平面AB1C;
(2)求直線B1C與平面ACC1A1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,滿足
a
2
n+1
=4Sn+4n+1,n∈N*
且a2,a5,a14恰好是等比數(shù)列{bn}的前三項.
(Ⅰ)求數(shù)列{an}、{bn}的通項公式;
(Ⅱ)記數(shù)列{bn}的前n項和為Tn,若對任意的n∈N*,(T n+
3
2
)k≥3n-6恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在極坐標系中,圓C的極坐標方程為ρ=6cosθ+8sinθ.現(xiàn)以極點O為原點,極軸為x軸的非負半軸建立平面直角坐標系.
(Ⅰ)求圓C的直角坐標方程;
(Ⅱ)若圓C上的動點P的直角坐標為(x,y),求x+y的最大值,并寫出x+y取得最大值時點P的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個空間幾何體的三視圖如圖所示,其中主視圖和側(cè)視圖都是半徑為1的圓,且這個幾何體是實心球體的一部分,則這個幾何體的體積為
 

查看答案和解析>>

同步練習冊答案