命題p:“直線l上不同的兩點A,B到平面α的距離為1”,命題q:“l(fā)∥α”,則p是q的(  )條件.
分析:此題考查點到面的距離問題,以及充分必要條件的判斷.
解答:解:命題p:“直線l上不同的兩點A,B到平面α的距離為1”
 那么l與平面α可能為相交,
∴p不是q的充分條件
命題q:“l(fā)∥α”,
那么直線l上的所有點到平面α的距離相等,但距離不一定為1
∴p不是q的必要條件
∴則p是q的既不充分也不必要條件.
故選D
點評:判斷充要條件的方法是:
①若p⇒q為真命題且q⇒p為假命題,則命題p是命題q的充分不必要條件;
②若p⇒q為假命題且q⇒p為真命題,則命題p是命題q的必要不充分條件;
③若p⇒q為真命題且q⇒p為真命題,則命題p是命題q的充要條件;
④若p⇒q為假命題且q⇒p為假命題,則命題p是命題q的即不充分也不必要條件.
⑤判斷命題p與命題q所表示的范圍,再根據(jù)“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),其焦距為2c,若
c
a
=
5
-1
2
(≈0.618),則稱橢圓C為“黃金橢圓”.
(1)求證:在黃金橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)中,a、b、c成等比數(shù)列.
(2)黃金橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的右焦點為F2(c,0),P為橢圓C上的任意一點.是否存在過點F2、P的直線l,使l與y軸的交點R滿足
RP
=-3
PF2
?若存在,求直線l的斜率k;若不存在,請說明理由.
(3)在黃金橢圓中有真命題:已知黃金橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點分別是F1(-c,0)、F2(c,0),以A(-a,0)、B(a,0)、D(0,-b)、E(0,b)為頂點的菱形ADBE的內(nèi)切圓過焦點F1、F2.試寫出“黃金雙曲線”的定義;對于上述命題,在黃金雙曲線中寫出相關(guān)的真命題,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①若直線l∥平面α,l∥平面β,則α∥β;
②各側(cè)面都是正方形的棱柱一定是正棱柱;
③一個二面角的兩個半平面所在的平面分別垂直于另一個二面角的兩個半平面所在的平面,則這兩個二面角的平面角相等或互為補(bǔ)角;
④過空間任意一點P一定可以作一個和兩條異面直線(點P不再此兩條異面直線上)都平行的平面.
其中不正確的命題的個數(shù)有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三條平行直線l1,l,l2把平面分成Ⅰ、Ⅱ、Ⅲ、Ⅳ四個區(qū)域(不含邊界),且直線l到l1,l2的距離相等.點O在直線l上,點A、B在直線
l1上,P為平面區(qū)域內(nèi)一點,且
OP
=λ1
OA
+λ2
OB
(λ1,λ2∈R)
,給出下列四個命題:
(1)若λ1>1,λ2>1,則點P位于區(qū)域Ⅰ;
(2)若點P位于區(qū)域Ⅱ,則λ12>1;
(3)若點P位于區(qū)域Ⅲ,則-1<λ12<0;
(4)若點P位于區(qū)域IV,則λ12<-1;
則所有正確命題的序號為
(1)(3)(4)
(1)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•楊浦區(qū)二模)(理)設(shè)斜率為k1的直線L交橢圓C:
x2
2
+y2=1
于A、B兩點,點M為弦AB的中點,直線OM的斜率為k2(其中O為坐標(biāo)原點,假設(shè)k1、k2都存在).
(1)求k1?k2的值.
(2)把上述橢圓C一般化為
x2
a2
+
y2
b2
=1

(a>b>0),其它條件不變,試猜想k1與k2關(guān)系(不需要證明).請你給出在雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)中相類似的結(jié)論,并證明你的結(jié)論.
(3)分析(2)中的探究結(jié)果,并作出進(jìn)一步概括,使上述結(jié)果都是你所概括命題的特例.
如果概括后的命題中的直線L過原點,P為概括后命題中曲線上一動點,借助直線L及動點P,請你提出一個有意義的數(shù)學(xué)問題,并予以解決.

查看答案和解析>>

同步練習(xí)冊答案