3.在平面直角坐標(biāo)系xOy中,點(diǎn)M的坐標(biāo)是(-1,$\sqrt{3}$).以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,則M的極坐標(biāo)為( 。
A.(2,$-\frac{2π}{3}$)B.(2,$-\frac{π}{3}$)C.(2,$\frac{π}{3}$)D.(2,$\frac{2π}{3}$)

分析 利用極坐標(biāo)與直角坐標(biāo)方程互化公式即可得出.

解答 解:$ρ=\sqrt{(-1)^{2}+(\sqrt{3})^{2}}$=2,tanθ=-$\sqrt{3}$,且點(diǎn)在第二象限,∴θ=$\frac{2π}{3}$.
∴M的極坐標(biāo)為$(2,\frac{2π}{3})$.
故選:D.

點(diǎn)評(píng) 本題考查了極坐標(biāo)與直角坐標(biāo)方程互化公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.函數(shù)f(x)=2x-ex+1.
(1)求f(x)的最大值;
(2)已知x∈(0,1),af(x)<tanx,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知直線y=$\frac{1}{e}$是函數(shù)f(x)=$\frac{ax}{e^x}$的切線(其中e=2.71828…).
(I)求實(shí)數(shù)a的值;
(Ⅱ)若對(duì)任意的x∈(0,2),都有f(x)<$\frac{m}{{2x-{x^2}}}$成立,求實(shí)數(shù)m的取值范圍;
(Ⅲ)若函數(shù)g(x)=lnf(x)-b的兩個(gè)零點(diǎn)為x1,x2,證明:g′(x1)+g′(x2)>$g'(\frac{{{x_1}+{x_2}}}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+tcosφ}\\{y=\sqrt{3}+tsinφ}\end{array}\right.$(t為參數(shù),φ∈[0,$\frac{π}{3}$]),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知圓C的圓心C的極坐標(biāo)為(2,$\frac{π}{3}$),半徑為2,直線l與圓C相交于M,N兩點(diǎn).
(I)求圓C的極坐標(biāo)方程;
(Ⅱ)求當(dāng)φ變化時(shí),弦長(zhǎng)|MN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=|x-2|+|x+a|(a∈R).
(1)若a=1時(shí),求不等式f(x)≥4的解集;
(2)若不等式f(x)≤2x的解集為[1,+∞),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.曲線$\left\{\begin{array}{l}{x=5+\frac{\sqrt{3}}{2}t}\\{y=-2+\frac{1}{2}t}\end{array}\right.$(t為參數(shù))與曲線$\left\{\begin{array}{l}{x=5+\sqrt{3}t}\\{y=-2+t}\end{array}\right.$(t為參數(shù))表示的是同一曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=-\frac{12}{13}t}\\{y=\frac{5}{13}t-3}\end{array}\right.$(t為參數(shù)),曲線C的極坐標(biāo)方程是ρ=-2cosθ.
(Ⅰ)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)設(shè)直線l與y軸的交點(diǎn)是M,N是曲線C上一動(dòng)點(diǎn),求|MN|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.點(diǎn)O、I、H、G分別為△ABC(非直角三角形)的外心、內(nèi)心、垂心和重心,給出下列關(guān)系式
①$\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}$=$\overrightarrow{0}$;
②sin2A•$\overrightarrow{OA}$+sin2B•$\overrightarrow{OB}$+sin2C•$\overrightarrow{OC}$=$\overrightarrow{0}$;
③a$\overrightarrow{IA}$+b$\overrightarrow{IB}$+c$\overrightarrow{IC}$=$\overrightarrow{0}$;
④tanA•$\overrightarrow{HA}$+tanB•$\overrightarrow{HB}$+tanC•$\overrightarrow{HC}$=$\overrightarrow{0}$.
其中一定正確的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,P、Q是單位圓上兩個(gè)點(diǎn),圓心O為坐標(biāo)原點(diǎn),∠POQ=90°,且P($\frac{{\sqrt{3}}}{2}$,$\frac{1}{2}$),則Q點(diǎn)的橫坐標(biāo)為(  )
A.-$\frac{1}{2}$B.-$\frac{{\sqrt{3}}}{2}$C.-$\frac{{\sqrt{2}}}{2}$D.-$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案