已知函數(shù)
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)若在的最大值為,求的值.
(1)在上是增函數(shù) (2)
解析試題分析:
(1)對函數(shù)求導(dǎo),求導(dǎo)函數(shù)大于0和小于0的解集,該函數(shù)的導(dǎo)函數(shù)為二次函數(shù),且含有參數(shù),可以通過判斷該二次函數(shù)的圖像的開口零點個數(shù)等確定導(dǎo)函數(shù)大于0和小于0的解集,進而得到單調(diào)區(qū)間.
(2)通過(1)可以得到時,函數(shù)在區(qū)間[1,3]的單調(diào)性得到最大值求出8(并判斷是否符合),a<1時,繼續(xù)通過討論f(x)的導(dǎo)函數(shù),通過對導(dǎo)函數(shù)(為二次函數(shù))的開口 根的個數(shù) 根的大小與是否在區(qū)間[1,3]來確定原函數(shù)在區(qū)間[1,3]上的最值,進而得到a的值.
試題解析:
(1) .1分
其判別式,
因為, 所以, ,對任意實數(shù), 恒成立,
所以,在上是增函數(shù) .4分
(2)當(dāng)時,由(1)可知,在上是增函數(shù),所以在的最大值為,由,解得 (不符合,舍去) 6分
當(dāng)時 ,,方程的兩根為
, , 8分
圖象的對稱軸
因為
(或), 所以
由 解得
①當(dāng),,因為,所以 時,,在是函數(shù),在的最大值,由,解得 (不符合,舍去). 12分
②當(dāng),,,,在是減函數(shù), 當(dāng)時,,在是增函數(shù).所以在的最大值或,由,,解得 (不符合,舍去), 14分
綜上所述
考點:導(dǎo)數(shù) 最值 單調(diào)性 二次函數(shù)
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù),,,記.
(1)求曲線在處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)當(dāng)時,若函數(shù)沒有零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(1)求函數(shù)在上的最小值;
(2)若存在是自然對數(shù)的底數(shù),,使不等式成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知某商品的進貨單價為1元/件,商戶甲往年以單價2元/件銷售該商品時,年銷量為1萬件,今年擬下調(diào)銷售單價以提高銷量,增加收益.據(jù)測算,若今年的實際銷售單價為x元/件(1≤x≤2),今年新增的年銷量(單位:萬件)與(2-x)2成正比,比例系數(shù)為4.
(1)寫出今年商戶甲的收益y(單位:萬元)與今年的實際銷售單價x間的函數(shù)關(guān)系式;
(2)商戶甲今年采取降低單價,提高銷量的營銷策略是否能獲得比往年更大的收益(即比往年收益更多)?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=lnx-a2x2+ax(aR).
(l)當(dāng)a=1時,證明:函數(shù)f(x)只有一個零點;
(2)若函數(shù)f(x)在區(qū)間(1,十)上是減函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知某商品的進貨單價為1元/件,商戶甲往年以單價2元/件銷售該商品時,年銷量為1萬件,今年擬下調(diào)銷售單價以提高銷量,增加收益.據(jù)測算,若今年的實際銷售單價為x元/件(1≤x≤2),今年新增的年銷量(單位:萬件)與(2-x)2成正比,比例系數(shù)為4.
(1)寫出今年商戶甲的收益y(單位:萬元)與今年的實際銷售單價x間的函數(shù)關(guān)系式;
(2)商戶甲今年采取降低單價,提高銷量的營銷策略是否能獲得比往年更大的收益(即比往年收益更多)?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x2-mlnx+(m-1)x,當(dāng)m≤0時,試討論函數(shù)f(x)的單調(diào)性;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知a,b為常數(shù),且a≠0,函數(shù)f(x)=-ax+b
+axln x,f(e)=2.
①求b;②求函數(shù)f(x)的單調(diào)區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com