17.已知f(α)=$\frac{{sin(π-α)cos(2π-α)sin(-α+\frac{3π}{2})}}{tan(-α-π)sin(-π-α)cos(-π+α)}$;
(1)化簡f(α);
(2)若α的終邊在第二象限,$sinα=\frac{3}{5}$,求f(α)的值.

分析 (1)直接由三角函數(shù)的誘導(dǎo)公式化簡即可得答案;
(2)由同角三角函數(shù)基本關(guān)系計(jì)算即可得答案.

解答 解:(1)f(α)=$\frac{{sin(π-α)cos(2π-α)sin(-α+\frac{3π}{2})}}{tan(-α-π)sin(-π-α)cos(-π+α)}$
=$\frac{sinα•cosα•(-cosα)}{-tanα•sinα•(-cosα)}=-\frac{co{s}^{2}α}{sinα}$;
(2)∵$sinα=\frac{3}{5}$,
∴$co{s}^{2}α=1-si{n}^{2}α=1-\frac{9}{25}=\frac{16}{25}$.
∴f(α)=$\frac{-co{s}^{2}α}{sinα}=-\frac{16}{15}$.

點(diǎn)評 本題考查了三角函數(shù)的誘導(dǎo)公式,考查了同角三角函數(shù)基本關(guān)系,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)y=f(x)的圖象如圖,則${f^'}({x_A})與{f^'}({x_B})$的關(guān)系是:(  )
A.${f^'}({x_A})>{f^'}({x_B})$B.${f^'}({x_A})<{f^'}({x_B})$C.${f^'}({x_A})={f^'}({x_B})$D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x+y≥1\\ x-y≥-1\\ 2x-y≤2\end{array}\right.$則z=4x+3y的最大值為24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知角α的終邊過點(diǎn)P(-4a,3a),(a<0)則2sinα+cosα的值是-$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.橢圓$\frac{{x}^{2}}{8}+{y}^{2}$=1的左、右焦點(diǎn)為F1,F(xiàn)2,點(diǎn)P在橢圓上,則|PF1|•|PF2|最大值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,角A,B,C的對邊分別為a,b,c,且a=2b,又sinA,sinC,sinB成等差數(shù)列.
(Ⅰ)求cos(B+C)的值;
(Ⅱ)若S△ABC=$\frac{3\sqrt{15}}{3}$,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x3+x.
(1)求定積分$\int_{-3}^3{({f(x)+{x^2}})dx}$的值;
(2)若曲線y=f(x)的一條切線經(jīng)過點(diǎn)(0,-2),求此切線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若函數(shù)$f(x)=2sin(ωx+\frac{π}{4})(ω>0)$與$g(x)=2cos(2x-\frac{π}{4})(ω>0)$的對稱軸完全相同,則函數(shù)$f(x)=2sin(ωx+\frac{π}{4})(ω>0)$在[0,π]上的一個遞增區(qū)間是(  )
A.$[0,\frac{π}{8}]$B.$[0,\frac{π}{4}]$C.$[\frac{π}{8},π]$D.$[\frac{π}{4},π]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)$y=tan(\frac{π}{4}-x)$的定義域是(  )
A.{x|x≠$\frac{π}{4}$,k∈Z x∈R}B.{x|x≠kπ$+\frac{π}{4}$,k∈Z,x∈R}
C.{x|x≠$-\frac{π}{4}$,k∈Z x∈R}D.{x|x≠kπ$+\frac{3}{4}π$,k∈Z,x∈R}

查看答案和解析>>

同步練習(xí)冊答案