函數(shù)f(x)=x+
a
x
(x>0,a>0).
(1)當(dāng)a=1時,證明:f(x)在(1,+∞)上是增函數(shù);
(2)若f(x)在(0,2)上是減函數(shù),求a的取值范圍.
證明:(1)當(dāng)a=1時,f(x)=x+
1
x
(x>0,a>0),f′(x)=1-
1
x2
=
x2-1
x2
.…(2分)
∵x>1,∴x2>1,即 x2-1>0,∴
x2-1
x2
>0,即 f′(x)>0,…(5分)
∴f(x)在(1,+∞)上是增函數(shù).   …(6分)
(2)f′(x)=1-
a
x2
=
x2-a
x2
,…(7分)
使f(x)在(0,2)上是減函數(shù),則當(dāng)x∈(0,2)時,x2-a≤0恒成立,…(9分)
即a≥x2恒成立,即a≥22=4,∴a≥4.    …(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面對命題“函數(shù)f(x)=x+
1
x
是奇函數(shù)”的證明不是綜合法的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

分段函數(shù)f(x)=
x,x>0
-x,x≤0
可以表示為f(x)=|x|,同樣分段函數(shù)f(x)=
x ,x≤3
3 ,x>3
可以表示為f(x)=
1
2
(x+3-|x-3|),仿此,分段函數(shù)f(x)=
3 ,x<3
x ,x≥3
可以表示為f(x)=
1
2
(x+3-|x-3|)
1
2
(x+3-|x-3|)
,分段函數(shù)f(x)=
a ,x≤a
x ,a<x<b
b ,x≥b
可以表示為f(x)=
1
2
(a+b+|x-a|-|x-b|)
1
2
(a+b+|x-a|-|x-b|)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當(dāng)x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)
;
②當(dāng)x∈[-1,0]時f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點的橫坐標(biāo)由小到大構(gòu)成一個無窮等差數(shù)列;
④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
其中真命題的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案