(08年北京卷理)(本小題共13分)

對于每項均是正整數(shù)的數(shù)列,定義變換,將數(shù)列變換成數(shù)列

對于每項均是非負整數(shù)的數(shù)列,定義變換,將數(shù)列各項從大到小排列,然后去掉所有為零的項,得到數(shù)列;又定義

是每項均為正整數(shù)的有窮數(shù)列,令

(Ⅰ)如果數(shù)列為5,3,2,寫出數(shù)列;

(Ⅱ)對于每項均是正整數(shù)的有窮數(shù)列,證明

(Ⅲ)證明:對于任意給定的每項均為正整數(shù)的有窮數(shù)列,存在正整數(shù),當時,

【標準答案】: (Ⅰ)解:

,

;

,

(Ⅱ)證明:設每項均是正整數(shù)的有窮數(shù)列

,,,,

從而

所以

,

(Ⅲ)證明:設是每項均為非負整數(shù)的數(shù)列

當存在,使得時,交換數(shù)列的第項與第項得到數(shù)列,則

當存在,使得時,若記數(shù)列,

所以

從而對于任意給定的數(shù)列,由可知

又由(Ⅱ)可知,所以

即對于,要么有,要么有

因為是大于2的整數(shù),所以經過有限步后,必有

即存在正整數(shù),當時,。

【高考考點】: 數(shù)列

【易錯提醒】: 入口出錯

【備考提示】: 由一個數(shù)列為基礎,按著某種規(guī)律新生出另一個數(shù)列的題目,新數(shù)列的前幾項一定不難出錯,它出錯,則整體出錯。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(08年北京卷理)(本小題共14分)

已知菱形的頂點在橢圓上,對角線所在直線的斜率為1.

(Ⅰ)當直線過點時,求直線的方程;

(Ⅱ)當時,求菱形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年北京卷理)如圖,函數(shù)的圖象是折線段,其中的坐標分別為,則       ;        .(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年北京卷理)(本小題共13分)

甲、乙等五名奧運志愿者被隨機地分到四個不同的崗位服務,每個崗位至少有一名志愿者.

(Ⅰ)求甲、乙兩人同時參加崗位服務的概率;

(Ⅱ)求甲、乙兩人不在同一個崗位服務的概率。

(Ⅲ)設隨機變量為這五名志愿者中參加崗位服務的人數(shù),求的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年北京卷理)(本小題共14分)

如圖,在三棱錐中,,

(Ⅰ)求證:;

(Ⅱ)求二面角的大。

(Ⅲ)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年北京卷理)過直線上的一點作圓的兩條切線,當直線關于對稱時,它們之間的夾角為(    )

A.         B.      C.     D.

查看答案和解析>>

同步練習冊答案