設(shè)f(x)=
-x2+2x+1(x≥0)
e-x(x<0)
關(guān)于x的方程f(x)=m(m∈R)恰有三個互不相等的實數(shù)根x1,x2,x3,則x1x2x3的取值范圍是
 
考點:函數(shù)的零點與方程根的關(guān)系
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:先確定0<m<2,當(dāng)m=2時,確定x1的范圍,利用x2,x3關(guān)于x=1對稱,結(jié)合配方法,可得0<x2x3<1,從而可求x1x2x3的取值范圍.
解答: 解:依題意得關(guān)于x的方程f(x)=m,(m∈R)恰有三個互不相同的實數(shù)根x1,x2,x3,不妨設(shè)x1<x2<x3,則
∵x≥0,f(x)=-x2+2x+1=-(x-1)2+2,∴0<m<2,
當(dāng)m=2時,由e-x=2,∴x=-ln2,∴-ln2<x1<0,
又x2,x3關(guān)于x=1對稱,則x2+x3=2,x2x3=-(x2-1)2+1,
∴0<x2x3<1,
∴-ln2<x1x2x3<0.
故答案為:(-ln2,0).
點評:本題考查分段函數(shù)的運(yùn)用,考查方程根,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+ax+1,其中a∈R,且a≠0.
(Ⅰ)若f(x)的最小值為-1,求a的值;
(Ⅱ)求y=|f(x)|在區(qū)間[0,|a|]上的最大值;
(Ⅲ)若方程|f(x)|=x-1在區(qū)間(0,+∞)有兩個不相等實根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體外接球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,一個確定的凸五邊形 ABCDE,令x=
AB
AC
,y=
AB
AD
,z=
AB
AE
,則x、y、z 的大小順序為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,an+1=
(3n+3)an+4n+6
n
(n∈N*).
(Ⅰ)證明:數(shù)列{
an
n
+
2
n
}是等比數(shù)列;
(Ⅱ)令bn=
3n-1
an+2
,數(shù)列{bn}的前n項和為Sn
①證明:bn+1+bn+2+…+b2n
4
5

②證明:當(dāng)n≥2時,Sn2>2(
S2
2
+
S3
3
+…+
Sn
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1+sinx÷cosx
1+sinx-cosx
+
1+sinx-cosx
1+sinx+cosx
的最小正周期是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}滿足an=2n-1(n∈N*)試判斷是否存在正數(shù)k,使得(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)≥k
2n+1
對一切n∈N*均成立?若存在,求出k的最大值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線的一個焦點為F,虛軸的一個端點為B,焦點F到一條漸近線的距離為d,若|FB|≥
3
d,則雙曲線離心率的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x|x-4|,則不等式f(x)≥f(1)的解集為
 

查看答案和解析>>

同步練習(xí)冊答案