5.焦點(diǎn)在x軸上的橢圓$\frac{x^2}{3n}+{y^2}=1(n>0)$的焦距為$4\sqrt{2}$,則長(zhǎng)軸長(zhǎng)是(  )
A.3B.6C.$6\sqrt{2}$D.2

分析 求得橢圓的a,b,c,由題意可得3n>1,2c=$4\sqrt{2}$,解得n=3,即可得到所求值.

解答 解:橢圓$\frac{x^2}{3n}+{y^2}=1(n>0)$的a=$\sqrt{3n}$,b=1,c=$\sqrt{3n-1}$,
由題意可知$\left\{\begin{array}{l}3n>1\\ 2\sqrt{3n-1}=4\sqrt{2}\end{array}\right.⇒n=3$,
所以長(zhǎng)軸長(zhǎng)為2a=6,
故選:B.

點(diǎn)評(píng) 本題考查橢圓的方程和運(yùn)用,主要考查橢圓的長(zhǎng)軸長(zhǎng),注意運(yùn)用a,b,c的關(guān)系,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知復(fù)數(shù)Z的共軛復(fù)數(shù)$\overline{Z}$=$\frac{1-i}{1+2i}$,則復(fù)數(shù)Z的虛部是(  )
A.$\frac{3}{5}$B.$\frac{3}{5}$iC.-$\frac{3}{5}$D.-$\frac{3}{5}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)a∈R,函數(shù)f(x)=e-x(a+ex-x2
(1)若a=1,求曲線y=f(x)在點(diǎn)(-1,f(-1))處的切線方程;
(2)判斷f(x)在R上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.如圖,在△ABC中,點(diǎn)D是BC上一點(diǎn),且$\overrightarrow{BD}$=λ$\overrightarrow{DC}$,過(guò)點(diǎn)D的直線分別交直線AB、AC于不同的兩點(diǎn)M、N,若$\overrightarrow{AB}$=$\frac{1}{2}$$\overrightarrow{AM}$,$\overrightarrow{AC}$=$\frac{3}{2}$$\overrightarrow{AN}$,則λ的值為( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知{an}是遞減等差數(shù)列,如圖是對(duì)數(shù)列{|an|}前n項(xiàng)和Tn求法的算法流程圖,圖中空白處理框中應(yīng)填入${T_n}={n^2}-11n+60$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0),P為橢圓上與長(zhǎng)軸端點(diǎn)不重合的一點(diǎn),F(xiàn)1,F(xiàn)2分別為橢圓的左、右焦點(diǎn),過(guò)F2作∠F1PF2外角平分線的垂線,垂足為Q,若|OQ|=2b,橢圓的離心率為e,則$\frac{{a}^{2}+{e}^{2}}{2b}$的最小值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.在△ABC中,若$\overrightarrow{AB}$•$\overrightarrow{AC}$=3$\overrightarrow{BA}$•$\overrightarrow{BC}$,則$\frac{tanA}{tanB}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若2cos(θ-$\frac{π}{3}$)=3cosθ,則tanθ=(  )
A.$\frac{2}{3}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{\sqrt{3}}{3}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分圖象如圖所示,則f(0)=( 。
A.-$\sqrt{3}$B.-$\frac{\sqrt{3}}{2}$C.-1D.-$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案