(本小題滿(mǎn)分13分)已知中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍的橢圓經(jīng)過(guò)點(diǎn)M(2,1)

(Ⅰ)求橢圓的方程;

(Ⅱ)直線平行于,且與橢圓交于AB兩個(gè)不同點(diǎn).

(。┤為鈍角,求直線軸上的截距m的取值范圍;

(ⅱ)求證直線MAMBx軸圍成的三角形總是等腰三角形.

 

【答案】

(1)(2)(3)利用直線MA、MB的傾斜角互補(bǔ),

證明直線MA、MBx軸始終圍成一個(gè)等腰三角形

【解析】

試題分析:解:(Ⅰ)設(shè)橢圓方程為

 解得 

∴橢圓的方程為.             ………………………… 4分

(Ⅱ)(。┯芍本平行于OM,得直線的斜率,

軸上的截距為m,所以的方程為

 得.

又直線與橢圓交于AB兩個(gè)不同點(diǎn),

,于是. ……………… 6分

為鈍角等價(jià)于,             

設(shè),

由韋達(dá)定理,代入上式,

化簡(jiǎn)整理得,即,故所求范圍是.

……………………………………………8分

(ⅱ)依題意可知,直線MAMB的斜率存在,分別記為,.

,.      ………………………………10分

所以 , 故直線MA、MB的傾斜角互補(bǔ),

故直線MA、MBx軸始終圍成一個(gè)等腰三角形.…………………… 13分

考點(diǎn):本試題考查了橢圓的方程和直線與橢圓的位置關(guān)系。

點(diǎn)評(píng):對(duì)于解決解析幾何的方程問(wèn)題,一般都是利用其性質(zhì)得到a,b,c的關(guān)系式,然后求解得到,而對(duì)于直線與橢圓的位置關(guān)系,通常利用設(shè)而不求的數(shù)學(xué)思想,結(jié)合韋達(dá)定理,以及判別式來(lái)分析求解。尤其關(guān)注圖形的特點(diǎn)與斜率和向量之間的關(guān)系轉(zhuǎn)換,屬于難度題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿(mǎn)分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標(biāo)系中,畫(huà)出函數(shù)在區(qū)間上的圖象.

(3)設(shè)0<x<,且方程有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿(mǎn)分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調(diào)性;

(3)若對(duì)任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省高三年級(jí)八月份月考試卷理科數(shù)學(xué) 題型:解答題

(本小題滿(mǎn)分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題

 

(本小題滿(mǎn)分13分)如圖,正三棱柱的所有棱長(zhǎng)都為2,的中點(diǎn)。

(Ⅰ)求證:∥平面

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來(lái)源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題

(本小題滿(mǎn)分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).

(1) 求函數(shù)的表達(dá)式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項(xiàng)和

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案