設(shè)Xn={1,2,3…n}(n∈N*),對(duì)Xn的任意非空子集A,定義f(A)為A中的最大元素,當(dāng)A取遍Xn的所有非空子集時(shí),對(duì)應(yīng)的f(A)的和為Sn,則S5=( 。
A、104B、120C、124D、129
分析:由題意得Xn的任意非空子集A一共有2n-1個(gè),在所有非空子集中每個(gè)元素出現(xiàn)2n-1次,可以推出有2n-1個(gè)子集含n,有2n-2個(gè)子集不含n含n-1,有2n-3子集不含n,n-1,含n-2,…,有2k-1個(gè)子集不含n,n-1,n-2…,k-1,含k,進(jìn)而利用錯(cuò)位相減法求出其和,令n=5,即可求出S5
解答:解:由題意得,在所有非空子集中每個(gè)元素出現(xiàn)2n-1次.
故有2n-1個(gè)子集含n,有2n-2個(gè)子集不含n含n-1,
有2n-3子集不含n,n-1,含n-2,…,
有2k-1個(gè)子集不含n,n-1,n-2…k-1,而含有k.
∵定義f(A)為A中的最大元素,
∴Sn=2n-1×n+2n-2×(n-1)+…+21×2+1,
即Sn=1+21×2+22×3+23×4+…+2n-1×n①
又2Sn=2+22×2+23×3+24×4+…+2n×n②
∴①-②可得-Sn=1+21+22+23+…+2n-1-2n×n
∴-Sn=
1-2n
1-2
-2n×n,
∴Sn=(n-1)2n+1,
∴S5=(5-1)×25+1=129.
故選:D.
點(diǎn)評(píng):本題主要考查集合的子集的概念,解決此類(lèi)問(wèn)題的關(guān)鍵是讀懂并且弄清題意,結(jié)合數(shù)列求和的方法求其和即可,找出規(guī)律是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Xn={1,2,3…n}(n∈N*),對(duì)Xn的任意非空子集A,定義f(A)為A中的最大元素,當(dāng)A取遍Xn的所有非空子集時(shí),對(duì)應(yīng)的f(A)的和為S,則S2=
5
5
,Sn=
(n-1)2n+1
(n-1)2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•許昌二模)設(shè)Xn={1,2,3…n}(n∈N*),對(duì)Xn的任意非空子集A,定義f(A)為A中的最大元素,當(dāng)A取遍Xn的所有非空子集時(shí),對(duì)應(yīng)的f(A)的和為Sn,則Sn=
(n-1)2n+1
(n-1)2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:許昌二模 題型:填空題

設(shè)Xn={1,2,3…n}(n∈N*),對(duì)Xn的任意非空子集A,定義f(A)為A中的最大元素,當(dāng)A取遍Xn的所有非空子集時(shí),對(duì)應(yīng)的f(A)的和為Sn,則Sn=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)Xn={1,2,3…n}(n∈N*),對(duì)Xn的任意非空子集A,定義f(A)為A中的最大元素,當(dāng)A取遍Xn的所有非空子集時(shí),對(duì)應(yīng)的f(A)的和為S,則S2=______,Sn=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案