求與雙曲線
x2
9
-
y2
16
=1
有共同漸近線,并且經(jīng)過點(-3,2
3
)的雙曲線方程.
分析:設(shè)所求雙曲線為
x2
9
-
y2
16
 =λ(λ≠0)
,把點(-3,2
3
)代入,求出λ,從而得到雙曲線的方程.
解答:解:設(shè)所求雙曲線為
x2
9
-
y2
16
 =λ(λ≠0)
,
把點(-3,2
3
)代入,得
9
9
-
12
16
,
解得λ=
1
4
,
∴所示的雙曲線方程為
4x2
9
-
y2
4
=1
點評:本題考查雙曲線的性質(zhì)和應(yīng)用,解題時要注意待定系數(shù)法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A(3,0)及雙曲線E:
x2
9
-
y2
16
=1
,若雙曲線E的右支上的點Q到點B(m,0)(m≥3)距離的最小值為|AB|.
(1)求m的取值范圍,并指出當(dāng)m變化時B的軌跡C
(2)如(圖1),軌跡C上是否存在一點D,它在直線y=
4
3
x
上的射影為P,使得
AP
OD
=
OP
PD
?若存在試指出雙曲線E的右焦點F分向量
AD
所成的比;若不存在,請說明理由.
(3)(理)當(dāng)m為定值時,過軌跡C上的點B(m,0)作一條直線l與雙曲線E的右支交于不同的兩點(圖2),且與直線y=
4
3
x
,y=-
4
3
x
分別交于M、N兩點,求△MON周長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線與橢圓
x2
9
+
y2
4
=1
有相同的焦點,它的一條漸近線為y=2x,求雙曲線標準方程.

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�