(本小題滿分14分)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240459506953996.png)
如圖,在三棱柱
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045950711663.png)
中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045950726395.png)
底面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045950742459.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045950757676.png)
,E、F分別是棱
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045950773496.png)
的中點.
(1)求證:AB⊥平面AA
1 C
1C;
(2)若線段
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045950789363.png)
上的點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045950804314.png)
滿足平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045950804449.png)
//平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045950820451.png)
,試確定點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045950804314.png)
的位置,并說明理由;
(3)證明:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045950867369.png)
⊥A
1C.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240459508823511.png)
(1)詳見解析;(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045950898315.png)
是線段
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045950913406.png)
的中點;(3)詳見解析.
試題分析:(1)求證:AB⊥平面AA
1 C
1C,證明線面垂直,只需證明線線垂直,即在平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045950991504.png)
找兩條直線與
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951007396.png)
垂直,由已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951023392.png)
平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951038473.png)
,故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951054522.png)
,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951069536.png)
,故可證得結(jié)論;(2)線段
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045950789363.png)
上的點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045950804314.png)
滿足平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951132512.png)
平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951147499.png)
,且面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951163456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951179227.png)
面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951194498.png)
,面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951163456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951179227.png)
面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951241472.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951257395.png)
,由面面平行的性質(zhì)可以得到
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951257582.png)
,在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951272514.png)
中,已知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951288318.png)
是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951303398.png)
的中點,由中位線定理,即可確定點
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045950898315.png)
的位置;(3)證明:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045950867369.png)
⊥A
1C,證明線線垂直,只需證明一條直線垂直于另一條直線所在的平面,注意到四邊形
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951350522.png)
是一個正方形,則
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951366556.png)
,易證
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951397574.png)
,可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951413462.png)
平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951241472.png)
,由(2)知平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951132512.png)
平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951147499.png)
,從而得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951413462.png)
平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951491479.png)
,即可證得結(jié)論.
(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951522423.png)
底面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951163456.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951537406.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951553374.png)
, 2分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951569548.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951584598.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951600412.png)
面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951615497.png)
. 4分
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951631211.png)
面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951647445.png)
//面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951241472.png)
,面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951163456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951179227.png)
面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951194498.png)
,面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951163456.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951179227.png)
面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951241472.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951257395.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951771395.png)
//
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951787398.png)
, 7分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951787211.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951272514.png)
中
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951818312.png)
是棱
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951834381.png)
的中點,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951849325.png)
是線段
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045950913406.png)
的中點. 8分
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951631211.png)
三棱柱
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951881632.png)
中
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951896516.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951912193.png)
側(cè)面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951927493.png)
是菱形,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951927555.png)
, 9分
由(1)可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045952021546.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951631211.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045952068614.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045952083478.png)
面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045951241472.png)
, 11分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045952083478.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045952130397.png)
. 12分
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045952146427.png)
分別為棱
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045952161479.png)
的中點,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045952177391.png)
//
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045952130397.png)
, 13分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045952208591.png)
. 14分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,四棱錐
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053631344450.png)
的底面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053631469401.png)
是平行四邊形,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053631484554.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053631516658.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053631547323.png)
分別是棱
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053631562440.png)
的中點.
(1)證明
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053631594345.png)
平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053631625371.png)
;
(2)若二面角P-AD-B為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053631640347.png)
,
①證明:平面PBC⊥平面ABCD
②求直線EF與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在四棱錐P-ABCD中,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051119077394.png)
平面ABCD,AD//BC,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051119093388.png)
AC,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051119109635.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051119140765.png)
,點M在線段PD上.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240511191716997.png)
(1)求證:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051119187409.png)
平面PAC;
(2)若二面角M-AC-D的大小為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051119202362.png)
,試確定點M的位置.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知四棱錐P—ABCD的底面為等腰梯形,AB∥CD,AC⊥BD,垂足為H,PH是四棱錐的高,E為AD的中點.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240505386223430.jpg)
(1)證明:PE⊥BC;
(2)若∠APB=∠ADB=60°,求直線PA與平面PEH所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,四棱柱ABCD—A
1B
1C
1D
1中,側(cè)棱A
1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA
1=AB=2,E為棱AA
1的中點.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240500566052462.jpg)
(1)證明B
1C
1⊥CE;
(2)求二面角B
1CEC
1的正弦值;
(3)設(shè)點M在線段C
1E上,且直線AM與平面ADD
1A
1所成角的正弦值為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050056605460.png)
,求線段AM的長.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240500566363331.jpg)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在直三棱柱
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042051377668.png)
中,D、E分別是BC和
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042051393378.png)
的中點,已知AB=AC=AA
1=4,ÐBAC=90°.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/2014082404205142413622.png)
(1)求證:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042051440432.png)
⊥平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042051455483.png)
;
(2)求二面角
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042051471634.png)
的余弦值;
(3)求三棱錐
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824042051486609.png)
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)m,n是兩條不同直線,α,β是兩個不同的平面,下列命題正確的是( 。
A.m∥α,n∥β且α∥β,則m∥n |
B.m⊥α,n⊥β且α⊥β,則m⊥n |
C.m⊥α,n?β,m⊥n,則α⊥β |
D.m?α,n?α,m∥β,n∥β,則α∥β |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045309322434.png)
是不同的直線,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045309338452.png)
是不同的平面,有以下四個命題:
①若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045309369608.png)
則
②若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045309400648.png)
則
③若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045309447601.png)
則
④若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045309478607.png)
則
其中真命題的序號是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知PA垂直于正方形ABCD所在平面,連接PB、PC、PD、AC、BD,則下列垂直關(guān)系中正確的序號是
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240442075849751.png)
①平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044207600460.png)
平面PBC ②平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044207600460.png)
平面PAD ③平面
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044207600460.png)
平面PCD
查看答案和解析>>