已知函數(shù)f(x)的定義域是x≠0的一切實(shí)數(shù)集,對(duì)定義域內(nèi)的任意x1,x2都有f(x1·x2)=f(x1)+f(x2),且當(dāng)x>1時(shí),f(x)>0,f(2)=1,
(1)求證:f(x)是偶函數(shù);
(2)求證:f(x)在(0,+∞)上是增函數(shù);
(3)試比較f()與f()的大小.
(1)證明:函數(shù)的定義域是{x|x≠0}. 令x1=x2=1,得f(1)=2f(1), ∴f(1)=0. 令x1=x2=-1,得f(1)=f[-1×(-1)]=f(-1)+f(-1), ∴2f(-1)=0. ∴f(-1)=0. ∴f(-x)=f(-1·x)=f(-1)+f(x)=f(x). ∴f(x)是偶函數(shù). (2)證明:設(shè)0<x1<x2,則 f(x2)-f(x1)=f(x1·)-f(x1)=f(x1)+f()-f(x1)=f(). ∵x2>x1>0,∴>1.∴f()>0,即f(x2)-f(x1)>0. ∴f(x2)>f(x1), 即f(x1)<f(x2). ∴f(x)在(0,+∞)上是增函數(shù). (3)解:由(1)知f(x)是偶函數(shù),則有f()=f(). 由(2)知f(x)在(0,+∞)上是增函數(shù),則f()>f(). ∴f()>f(). |
思路分析:本題是抽象函數(shù)問(wèn)題,主要考查函數(shù)的奇偶性和單調(diào)性及其綜合應(yīng)用.解決此類(lèi)問(wèn)題的關(guān)鍵是利用好條件中的函數(shù)性質(zhì)等式.(1)利用賦值法證明f(-x)=f(x);(2)利用定義法證明單調(diào)性;(3)利用函數(shù)的單調(diào)性比較它們的大。 綠色通道:判斷抽象函數(shù)的奇偶性和單調(diào)性通常應(yīng)用定義法,比較抽象函數(shù)值的大小通常利用抽象函數(shù)的單調(diào)性來(lái)比較.其關(guān)鍵是將所給的關(guān)系等式進(jìn)行有效的變形和恰當(dāng)?shù)馁x值. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
3 |
a-3 |
2 |
x | 2 1 |
x | 2 2 |
x | 3 1 |
x | 3 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x |
1+x |
1 |
10 |
1 |
9 |
1 |
2 |
19 |
2 |
19 |
2 |
1 |
2 |
1 |
9 |
1 |
10 |
1 |
x |
| ||
1+
|
x |
1+x |
1 |
1+x |
x |
1+x |
1+x |
1+x |
1 | ||
2x+
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
1-x |
1 |
2 |
1 |
n |
2 |
n |
n-1 |
n |
lim |
n→∞ |
4Sn-9Sn |
4Sn+1+9Sn+1 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x+1-a |
a-x |
1 |
2 |
1 |
2 |
3 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
1-x |
1 |
n |
2 |
n |
n-1 |
n |
1 |
a1 |
1 |
a2 |
1 |
an |
sinα | ||
|
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com