6.已知數(shù)列{an}是等比數(shù)列,若${a_2}=1,{a_5}=\frac{1}{8}$,則${a_1}{a_2}+{a_2}{a_3}+…+{a_n}{a_{n+1}}({n∈{N^*}})$的取值范圍是(  )
A.$({\frac{2}{3},2}]$B.$[{1,\frac{8}{3}})$C.$[{2,\frac{8}{3}})$D.$({-∞,\frac{8}{3}})$

分析 利用等比數(shù)列的通項公式與求和公式即可得出.

解答 解:由已知得數(shù)列{an}的公比滿足q3=$\frac{{a}_{5}}{{a}_{2}}$=$\frac{1}{8}$,解得q=$\frac{1}{2}$,
∴a1=2,a3=$\frac{1}{2}$,
故數(shù)列{anan+1}是以2為首項,公比為$\frac{{a}_{2}{a}_{3}}{{a}_{1}{a}_{2}}$=$\frac{1}{4}$的等比數(shù)列,
∴a1a2+a2a3+…+anan+1=$\frac{2[1-(\frac{1}{4})^{n}]}{1-\frac{1}{4}}$=$\frac{8}{3}$$[1-(\frac{1}{4})^{n}]$∈$[2,\frac{8}{3})$,
故選:C.

點評 本題考查了等比數(shù)列的通項公式與求和公式、數(shù)列的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.等比數(shù)列{an}中各項均為正數(shù),Sn是其前n項和,且滿足2S3=8a1+3a2,a4=16,則S4=( 。
A.9B.15C.18D.30

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.某公司即將推車一款新型智能手機,為了更好地對產(chǎn)品進行宣傳,需預估市民購買該款手機是否與年齡有關,現(xiàn)隨機抽取了50名市民進行購買意愿的問卷調(diào)查,若得分低于60分,說明購買意愿弱;若得分不低于60分,說明購買意愿強,調(diào)查結(jié)果用莖葉圖表示如圖所示.
(1)根據(jù)莖葉圖中的數(shù)據(jù)完成2×2列聯(lián)表,并判斷是否有95%的把握認為市民是否購買該款手機與年齡有關?
購買意愿強購買意愿弱合計
20-40歲
大于40歲
合計
(2)從購買意愿弱的市民中按年齡進行分層抽樣,共抽取5人,從這5人中隨機抽取2人進行采訪,記抽到的2人中年齡大于40歲的市民人數(shù)為X,求X的分布列和數(shù)學期望.
附:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
P(K2≥k00.1000.0500.0100.001
k02.7063.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知實數(shù)x,y滿足$\left\{\begin{array}{l}x+y≤2\\ x-y≤2\\ 0≤x≤1\end{array}\right.$則z=2x+4y的最大值是( 。
A.-4B.2C.6D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知雙曲線${C_1}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$與圓${C_2}:{x^2}+{y^2}={c^2}$(c是雙曲線的半焦距)相交于第二象限內(nèi)一點M,點N在x軸下方且在圓C2上,又F1,F(xiàn)2分別是雙曲線C1的左右焦點,若$∠{F_2}NM=\frac{π}{3}$,則雙曲線的離心率為(  )
A.$\sqrt{3}$B.2C.$\sqrt{3}+1$D.$\frac{{\sqrt{3}+1}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知△ABC中,$AB=1,BC=\sqrt{3},BD$是AC邊上的中線.
(1)求$\frac{sin∠ABD}{sin∠CBD}$; 
(2)若$∠A=\frac{2π}{3}$,求BD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,點P(x0,$\frac{5}{2}$)為雙曲線上一點,若△PF1F2的內(nèi)切圓半徑為1,且圓心G到原點O的距離為$\sqrt{5}$,則雙曲線的方程為(  )
A.$\frac{{x}^{2}}{3}$-$\frac{8{y}^{2}}{25}$=1B.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1C.$\frac{{x}^{2}}{6}$-$\frac{2{y}^{2}}{25}$=1D.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{50}$=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知曲線C1的極坐標方程為ρ($\sqrt{2}$cosθ-sinθ)=a,曲線C2的參數(shù)方程為$\left\{\begin{array}{l}x=sinθ+cosθ\\ y=1+sin2θ\end{array}$(θ為參數(shù)),且C1與C2有兩個不同的交點.
(1)寫出曲線C1的直角坐標方程和曲線C2的普通方程;
(2)求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知$sin(θ-\frac{π}{4})=\frac{1}{5}$,則$cos(θ+\frac{π}{4})$=( 。
A.$-\frac{1}{5}$B.$\frac{1}{5}$C.$-\frac{{2\sqrt{2}}}{5}$D.$\frac{{2\sqrt{2}}}{5}$

查看答案和解析>>

同步練習冊答案