【題目】已知數(shù)列{an}的前n項和為Sn , 且Sn=2an﹣3n(n∈N+).
(1)求a1 , a2 , a3的值;
(2)設bn=an+3,證明數(shù)列{bn}為等比數(shù)列,并求通項公式an .
【答案】
(1)解:∵數(shù)列{an}的前n項和為Sn,且Sn=2an﹣3n(n∈N+).
∴n=1時,由a1=S1=2a1﹣3×1,解得a1=3,
n=2時,由S2=2a2﹣3×2,得a2=9,
n=3時,由S3=2a3﹣3×3,得a3=21.
(2)解:∵Sn=2an﹣3×n,∴Sn+1=2an+1﹣3×(n+1),
兩式相減,得an+1=2an+3,*
把bn=an+3及bn+1=an+1+3,代入*式,
得bn+1=2bn,(n∈N*),且b1=6,
∴數(shù)列{bn}是以6為首項,2為公比的等比數(shù)列,
∴bn=6×2n﹣1,
∴ .
【解析】(1)根據(jù)遞推公式Sn=2an﹣3n,可求出所求值,(2)由Sn=2an﹣3×n,則Sn+1=2an+1﹣3×(n+1),兩式相減得an+1=2an+3,將bn代入可得bn+1=2bn,數(shù)列{bn}是以6為首項,2為公比的等比數(shù)列bn=6×2n﹣1,a n = b n 3= 3 ( 2 n 1 ) .
【考點精析】利用等比數(shù)列的通項公式(及其變式)和數(shù)列的前n項和對題目進行判斷即可得到答案,需要熟知通項公式:;數(shù)列{an}的前n項和sn與通項an的關系.
科目:高中數(shù)學 來源: 題型:
【題目】在正方體上任意選擇4個頂點,它們可能是如下各種幾何形體的4個頂點,這些幾何形體是(寫出所有正確結論的編號).
①矩形;
②不是矩形的平行四邊形;
③有三個面為等腰直角三角形,有一個面為等邊三角形的四面體;
④每個面都是等邊三角形的四面體;
⑤每個面都是直角三角形的四面體.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=cos2x+2 sinxcosx﹣sin2x.
(1)求函數(shù)f(x)的最小正周期
(2)求函數(shù)f(x)單調增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】凸函數(shù)的性質定理為:如果函數(shù)f(x)在區(qū)間D上是凸函數(shù),則對于區(qū)間D內的任意x1 , x2 , …,xn , 有 ≤f( ),已知函數(shù)y=sinx在區(qū)間(0,π)上是凸函數(shù),則在△ABC中,sinA+sinB+sinC的最大值為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C1: +x2=1(a>1)與拋物線C :x2=4y有相同焦點F1 .
(Ⅰ)求橢圓C1的標準方程;
(Ⅱ)已知直線l1過橢圓C1的另一焦點F2 , 且與拋物線C2相切于第一象限的點A,設平行l(wèi)1的直線l交橢圓C1于B,C兩點,當△OBC面積最大時,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設x∈R,記不超過x的最大整數(shù)為[x],例如[2.34]=2,[﹣1.5]=﹣2,令{x}=x﹣[x],則 ( )
A.是等差數(shù)列但不是等比數(shù)列
B.既是等差數(shù)列也是等比數(shù)列
C.是等比數(shù)列但不是等差數(shù)列
D.既不是等差數(shù)列也不是等比數(shù)列
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=x(lnx﹣ax)(a∈R)在區(qū)間(0,2)上有兩個極值點,則a的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com