已知(x+1)2014=a0+a1(x-1)+a2(x-1)2+…+a2014(x-1)2014,則a0+a1+a2+…a2014=
 
考點:二項式系數(shù)的性質
專題:二項式定理
分析:在所給的等式中,令x=1,可得 a0+a1+a2+…a2014的值.
解答: 解:在(x+1)2014=a0+a1(x-1)+a2(x-1)2+…+a2014(x-1)2014中,
令x=2可得 a0+a1+a2+…a2014=32014,
故答案為:32014
點評:本題主要考查二項式定理的應用,注意根據(jù)題意,分析所給代數(shù)式的特點,通過給二項式的x賦值,求展開式的系數(shù)和,可以簡便的求出答案,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,Sn=2an-2.
(1)求數(shù)列{an}的通項公式;
(2)設bn=log2an,cn=
1
bnbn+1
,記數(shù)列{cn}的前n項和Tn,若對n∈N*,Tn≤k(n+4)恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知矩陣A=
0
1
3
1-
2
3
,求點M(-1,1)在矩陣A-1對應的變換作用下得到的點M′坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={(x,y)|x2+y2≤2,x∈Z,y∈Z},則從A中任選一個元素(x,y)滿足x+y≥1的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}的各項均為正數(shù),且滿足a5a6+a4a7=8,則log2a1+log2a2+…+log2a10=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α是第一象限角,sinα=
5
5
,tan(β-α)=-
1
3
,則tan(β-2α)的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體的三視圖如圖所示,其外接球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)定義在R上,對任意實數(shù)x有f(x+3)=-f(x)+2
2
,若函數(shù)y=f(x-1)的圖象關于直線x=1對稱,f(-1)=
2
,則f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={1,k-1},B={2,3},且A∩B={2},則實數(shù)k的值為
 

查看答案和解析>>

同步練習冊答案