【題目】解關(guān)于x的不等式

【答案】見解析

【解析】

根據(jù)a的范圍,分a等于0和a大于0兩種情況考慮:當時,把代入不等式得到一個一元一次不等式,求出不等式的解集;當a大于0時,把原不等式的左邊分解因式,再根據(jù)a大于1,及a大于0小于1分三種情況取解集,當a大于1時,根據(jù)小于1,利用不等式取解集的方法求出解集;當時,根據(jù)完全平方式大于0,得到x不等于1;當a大于0小于1時,根據(jù)大于1,利用不等式取解集的方法即可求出解集,綜上,寫出a不同取值時,各自的解集即可.

時,不等式化為;

時,原不等式化為,

時,不等式的解為;

時,不等式的解為

時,不等式的解為;

綜上所述,得原不等式的解集為:

時,解集為;當時,解集為;

時,解集為;當時,解集為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】從甲、乙兩名學生中選拔一人參加射箭比賽,為此需要對他們的射箭水平進行測試.現(xiàn)這兩名學生在相同條件下各射箭10次,命中的環(huán)數(shù)如下:

8

9

7

9

7

6

10

10

8

6

10

9

8

6

8

7

9

7

8

8

(1)計算甲、乙兩人射箭命中環(huán)數(shù)的平均數(shù)和標準差;

(2)比較兩個人的成績,然后決定選擇哪名學生參加射箭比賽.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的部分圖象如圖所示,且相鄰的兩個最值點的距離為.

1)求函數(shù)的解析式;

2)若將函數(shù)的圖象向左平移1個單位長度后得到函數(shù)的圖象,關(guān)于的不等式上有解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合P={x|a+1≤x≤2a+1},Q={x|x2-3x≤10}.

(1)a=3,求(RP)∩Q;

(2)PQQ,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠要建造一個長方形無蓋蓄水池,其容積為立方米,深為.如果池底每平方米的造價為元,池壁每平方米的造價為元,那么怎樣設(shè)計水池能使總造價最低(設(shè)蓄水池池底的相鄰兩邊邊長分別為,)?最低總造價是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年2月22日上午,山東省省委、省政府在濟南召開山東省全面展開新舊動能轉(zhuǎn)換重大工程動員大會,會議動員各方力量,迅速全面展開新舊動能轉(zhuǎn)換重大工程.某企業(yè)響應(yīng)號召,對現(xiàn)有設(shè)備進行改造,為了分析設(shè)備改造前后的效果,現(xiàn)從設(shè)備改造前后生產(chǎn)的大量產(chǎn)品中各抽取了200件產(chǎn)品作為樣本,檢測一項質(zhì)量指標值,若該項質(zhì)量指標值落在內(nèi)的產(chǎn)品視為合格品,否則為不合格品.圖1是設(shè)備改造前的樣本的頻率分布直方圖,表1是設(shè)備改造后的樣本的頻數(shù)分布表.

表1:設(shè)備改造后樣本的頻數(shù)分布表

質(zhì)量指標值

頻數(shù)

4

36

96

28

32

4

(1)完成下面的列聯(lián)表,并判斷是否有99%的把握認為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標值與設(shè)備改造有關(guān);

設(shè)備改造前

設(shè)備改造后

合計

合格品

不合格品

合計

(2)根據(jù)圖1和表1提供的數(shù)據(jù),試從產(chǎn)品合格率的角度對改造前后設(shè)備的優(yōu)劣進行比較;

(3)根據(jù)市場調(diào)查,設(shè)備改造后,每生產(chǎn)一件合格品企業(yè)可獲利180元,一件不合格品虧損 100元,用頻率估計概率,則生產(chǎn)1000件產(chǎn)品企業(yè)大約能獲利多少元?

附:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】解關(guān)于的不等式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)a >0,已知函數(shù) (x>0)

()討論函數(shù)的單調(diào)性;

()試判斷函數(shù)上是否有兩個零點,并說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三角形的面積為,其中,為三角形的邊長,為三角形內(nèi)切圓的半徑,則利用類比推理,可得出四面體的體積為( )

A.

B.

C. ,(為四面體的高)

D. ,(,,分別為四面體的四個面的面積,為四面體內(nèi)切球的半徑)

查看答案和解析>>

同步練習冊答案