若函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x),且x∈(-1,1]時(shí)f(x)=1-x2,函數(shù)g(x)=,則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,10]內(nèi)零點(diǎn)的個(gè)數(shù)為    
【答案】分析:函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x),且x∈(-1,1]時(shí)f(x)=1-x2,故其為周期性函數(shù),函數(shù)g(x)=,是一個(gè)偶函數(shù),作出它們的圖象,由圖象上看交點(diǎn)個(gè)數(shù).對(duì)邊界處的關(guān)鍵點(diǎn)要作準(zhǔn).
解答:解:作出區(qū)間[-5,10]上的兩個(gè)函數(shù)的圖象,
y軸右邊最后一個(gè)公共點(diǎn)是(10,1)y軸左邊有四個(gè)交點(diǎn),
y軸右邊是9個(gè)交點(diǎn),y軸上有一個(gè)交點(diǎn),總共是14個(gè)交點(diǎn).
故應(yīng)填14.
點(diǎn)評(píng):考查答題者使用圖象輔助作題的意識(shí)與能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)的定義域是[0,2],則函數(shù)y=f(x+1)+f(x-1)的定義域?yàn)?!--BA-->
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x-1)的定義域?yàn)椋?,2],則函數(shù)y=f(
1x
)的定義域?yàn)?!--BA-->
{x|x≥1}
{x|x≥1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)滿足f′(x)>f(x),則f(2012)與e2012f(0)的大小關(guān)系為
f(2012)>e2012f(0)
f(2012)>e2012f(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=2x3+ax2+bx+1的導(dǎo)數(shù)為f′(x),若函數(shù)y=f'(x)的圖象關(guān)于直線x=-
1
2
對(duì)稱,且f′(1)=0.
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)若對(duì)于任意實(shí)數(shù)x,
1
6
f′(x)+m>0
恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+(2a-1)x-alnx,g(x)=-
4x
-alnx
(a∈R).
(1)a<0時(shí),求f(x)的極小值;
(2)若函數(shù)y=f(x)與y=g(x)的圖象在x∈[1,3]上有兩個(gè)不同的交點(diǎn)M,N,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案