當x∈[
π
6
,
6
]時,函數(shù)y=3-sinx-2cos2x的值域為
 
考點:三角函數(shù)的最值
專題:三角函數(shù)的圖像與性質(zhì)
分析:利用同角三角函數(shù)間的關(guān)系與二次函數(shù)的配方法可求得y=2(sinx-
1
4
)
2
+
7
8
,x∈[
π
6
,
6
]⇒-
1
2
≤sinx≤1,從而可求函數(shù)y=3-sinx-2cos2x的值域.
解答: 解:∵y=3-sinx-2cos2x
=2sin2x-sinx+1
=2(sinx-
1
4
)
2
+
7
8
,
∵x∈[
π
6
6
]時,
∴-
1
2
≤sinx≤1,
∴當sinx=
1
4
時,ymin=
7
8
;
當sinx=-
1
2
時,ymax=2;
∴函數(shù)y=3-sinx-2cos2x的值域為[
7
8
,2].
故答案為:[
7
8
,2].
點評:本題考查復(fù)合函數(shù)的值域,著重考查二次函數(shù)的配方法與正弦函數(shù)的單調(diào)性與值域,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx-
1
x
,(其中a∈R)
(1)設(shè)h(x)=f(x)+x,討論h(x)的單調(diào)性.
(2)若函數(shù)f(x)有唯一的零點,求a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域[-1,5],部分對應(yīng)值如表,f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,下列關(guān)于函數(shù)f(x)的命題:
x -1 0 2 4 5
f(x) 1 2 1.5 2 1
①函數(shù)f(x)的值域為[1,2];
②函數(shù)f(x)在[0,2]上是減函數(shù);
③當1<a<2時,函數(shù)y=f(x)-a最多有4個零點;
④如果當x∈[-1,t]時,f(x)的最大值是2,那么t的最大值為4.
其中正確命題的序號是
 
(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a-i
1-i
+2=bi(a,b∈R,i為虛數(shù)單位),那么a+bi的共軛復(fù)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

空間三點A(1,5,-2),B(2,4,1),C(p,2,q+2),若A、B、C三點共線,則p+q=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線l過點P(-2,2),以l上的點為圓心,1為半徑的圓與圓C:x2+y2+12x+35=0沒有公共點,則直線l的斜率k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lg
x
2-x
,若f(a)+f(b)=0,則
3
a
+
1
b
最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在集合{1,2,3,4}中任取一個偶數(shù)a和一個奇數(shù)b構(gòu)成以原點為起點的向量
a
=(a,b),從所得的以原點為起點的向量中任取兩個向量為鄰邊作平行四邊形,則平行四邊形的面積等于2的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,AB=3,BC=4,∠ABC=120°,若把△ABC繞直線AB旋轉(zhuǎn)一周,則所形成的幾何體的體積是( 。
A、11πB、12π
C、13πD、14π

查看答案和解析>>

同步練習(xí)冊答案