某廠擬生產(chǎn)甲、乙兩種試銷產(chǎn)品,每件銷售收入分別為3千元、2千元. 甲、乙產(chǎn)品都需要在A,B兩種設備上加工,在每臺A、B上加工一件甲所需工時分別為1工時、2工時,加工一件乙所需工時分別為3工時、1工時,A、B兩種設備每月有效使用臺時數(shù)為450,問兩種產(chǎn)品各生產(chǎn)多少時,月收入最大值?最大值是多少?.
分析:先設甲、乙兩種產(chǎn)品月產(chǎn)量分別為x、y件,寫出約束條件、目標函數(shù),欲求生產(chǎn)收入最大值的范圍,即求可行域中的最優(yōu)解,在線性規(guī)劃的解答題中建議使用直線平移法求出最優(yōu)解,即將目標函數(shù)看成是一條直線,分析目標函數(shù)Z與直線截距的關(guān)系,進而求出最優(yōu)解.注意:最后要將所求最優(yōu)解還原為實際問題.
解答:精英家教網(wǎng)解:設甲、乙兩種產(chǎn)品月的產(chǎn)量分別為x,y件,(1分)
約束條件是 
x+3y≤450
2x+y≤450
x≥0
y≥0
------------(4分)
目標函數(shù)是z=3x+2y------------(5分)
由約束條件畫出可行域,如圖.------(8分)
將z=3x+2y它變形為y=-
3
2
x+
z
2
,
這是斜率為-
3
2
、隨z變化的一簇直線.
z
2
是直線在y軸上的截距,當
z
2
最大時z最大,當然直線要與可行域相交,即在滿足約束條件時目標函數(shù)取得最大值.
x+3y=450
2x+y=450
解得 
x=180
y=90
--------------------(11分)
在這個問題中,使z=3x+2y取得最大值的(x,y)是兩直線2x+y=450與x+3y=450的交點(180,90).--(10分)∴z=3•×180+2•×90=720(千元)…(13分)
答:每月生產(chǎn)甲180件,生產(chǎn)乙90件月生產(chǎn)收入最大,最大值為72萬元-----(14分)
點評:在解決線性規(guī)劃的應用題時,其步驟為:①分析題目中相關(guān)量的關(guān)系,列出不等式組,即約束條件?②由約束條件畫出可行域?③分析目標函數(shù)Z與直線截距之間的關(guān)系?④使用平移直線法求出最優(yōu)解?⑤還原到現(xiàn)實問題中.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

某廠擬生產(chǎn)甲、乙兩種試銷產(chǎn)品,每件銷售收入分別為3千元、2千元.甲、乙產(chǎn)品都需要在A、B兩種設備上加工,在每臺A、B上加工一件甲所需工時分別為1工時、2工時,加工一件乙所需工時分別為2工時、1工時,A、B兩種設備每月有效使用臺時數(shù)為a(400≤a≤500).求生產(chǎn)收入最大值的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•成都模擬)某廠擬生產(chǎn)甲、乙兩種適銷產(chǎn)品,每件銷售收入分別為0.3萬元、0.2萬元.甲、乙兩種產(chǎn)品都需在A、B兩種設備上加工,在每臺A、B設備上加工1件甲產(chǎn)品設備所需工時分別為1h、2h,加工1件乙產(chǎn)品設備所需工時分別為2h、1h,A、B兩種設備每月有效使用臺時數(shù)分別為400h、500h.則月銷售收入的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某廠擬生產(chǎn)甲、乙兩種適銷產(chǎn)品,每件銷售收入分別為3000元,2000元.甲、乙都需要在A、B兩種設備上加工,在A、B設備上加工1件甲所需工時分別為1h、2h,加工1件乙所需工時分別為2h、1h,A、B兩種設備每月有效使用時效分別為400h和500h,問甲、乙各生產(chǎn)多少件能使每月收入最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某廠擬生產(chǎn)甲、乙兩種適銷產(chǎn)品,每件利潤分別為300、500元,甲、乙產(chǎn)品的部件各自在A、B兩個車間分別生產(chǎn),每件甲、乙產(chǎn)品的部件分別需要A、B車間的生產(chǎn)能力1、2工時;兩種產(chǎn)品的部件最后都要在C車間裝配,裝配每件甲、乙產(chǎn)品分別需要3、4工時.A、B、C三個車間每天可用于生產(chǎn)這兩種產(chǎn)品的工時分別為8、12、36,應如何安排生產(chǎn)這兩種產(chǎn)品才能獲利最多?

查看答案和解析>>

同步練習冊答案