已知函數(shù)g(x)=
1
sinθ•x
+lnx
在[1,+∞)上為增函數(shù),且θ∈(0,π),f(x)=mx-
m-1
x
-lnx
,m∈R.
(1)求θ的值;
(2)若f(x)-g(x)在[1,+∞)上為單調(diào)函數(shù),求m的取值范圍;
(3)設(shè)h(x)=
2e
x
,若在[1,e]上至少存在一個x0,使得f(x0)-g(x0)>h(x0)成立,求m的取值范圍.
(1)由題意,g′(x)=-
1
sinθ•x2
+
1
x
≥0在[1,+∞)上恒成立,即
sinθ•x-1
sinθ•x2
≥0

∵θ∈(0,π),∴sinθ>0.故sinθ•x-1≥0在[1,+∞)上恒成立,只須sinθ•1-1≥0,
即sinθ≥1,只有sinθ=1.結(jié)合θ∈(0,π),得θ=
π
2

(2)由(1),得f(x)-g(x)=mx-
m
x
-2lnx

(f(x)-g(x))=
mx2-2x+m
x2

∵f(x)-g(x)在其定義域內(nèi)為單調(diào)函數(shù),
∴mx2-2x+m≥0或者mx2-2x+m≤0在[1,+∞)恒成立.mx2-2x+m≥0等價于m(1+x2)≥2x,即m≥
2x
1+x2
,
2x
x2+1
=
2
x+
1
x
,(
2
x+
1
x
max=1,∴m≥1.mx2-2x+m≤0等價于m(1+x2)≤2x,即m≤
2x
1+x2

在[1,+∞)恒成立,而
2x
x2+1
∈(0,1],m≤0.
綜上,m的取值范圍是(-∞,0]∪[1,+∞).
(3)構(gòu)造F(x)=f(x)-g(x)-h(x),F(x)=mx-
m
x
-2lnx-
2e
x

當(dāng)m≤0時,x∈[1,e],mx-
m
x
≤0
,-2lnx-
2e
x
<0
,
所以在[1,e]上不存在一個x0,使得f(x0)-g(x0)>h(x0)成立.
當(dāng)m>0時,(F(x))′=m+
m
x2
-
2
x
+
2e
x2
=
mx2-2x+m+2e
x2

因為x∈[1,e],所以2e-2x≥0,mx2+m>0,
所以(F(x))'>0在x∈[1,e]恒成立.
故F(x)在[1,e]上單調(diào)遞增,F(x)max=F(e)=me-
m
e
-4
,只要me-
m
e
-4>0
,
解得m>
4e
e2-1

故m的取值范圍是(
4e
e2-1
,+∞)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=1-cos(πx+2φ)(0<φ<
π
2
)
的圖象過點(
1
2
,  2)
,若有4個不同的正數(shù)xi滿足g(xi)=M(0<M<1),且xi<4(i=1,2,3,4),則x1+x2+x3+x4等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=
1-x21+x2
(x≠0,x≠±1,x∈R)
的值域為A,定義在A上的函數(shù)f(x)=x-2-x2(x∈A).
(1)判斷函數(shù)f(x)的奇偶性;
(2)判斷函數(shù)f(x)的單調(diào)性并用定義證明;
(3)解不等式f(3x+1)>f(5x+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=
1-2x1+2x
.判斷并證明函數(shù)g(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…+
x2013
2013
,則函數(shù)g(x+3)的零點所在的區(qū)間為( 。
A、(-1,0)
B、(-4,-3)
C、(-3,-2)或(-2,-1)
D、(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=
-1,x>0
0,x=0
1,x<0
,函數(shù)f(x)=x2?g(x),則滿足不等式f(a-2)+f(a2)>0的實數(shù)a的取值范圍是(  )
A、(-2,1)
B、(-1,2)
C、(-∞,-2)∪(1,+∞)
D、(-∞,-1)∪(2,+∞)

查看答案和解析>>

同步練習(xí)冊答案