已知橢圓 的左、右焦點分別是、,是橢圓右準線上的一點,線段的垂直平分線過點.又直線按向量平移后的直線是,直線按向量平移后的直線是 (其中)。
(1) 求橢圓的離心率的取值范圍。
(2)當(dāng)離心率最小且時,求橢圓的方程。
(3)若直線相交于(2)中所求得的橢圓內(nèi)的一點,且與這個橢圓交于、兩點,與這個橢圓交于、兩點。求四邊形ABCD面積的取值范圍。
(1);(2);(3) .

試題分析:(1)要求離心率e的范圍,就要找出含e的不等式.這個不等式從哪里來?

線段的垂直平分線過點,所以,兩邊除以得:,解這個不等式即可得離心率的取值范圍:.(2)由(1)知的最小值為,即.
又因為,這樣便得一個方程組,解這個方程組即可.
(3)據(jù)條件知直線相互垂直,所以四邊形ABCD的對角線互相垂直,其面積.
求出直線的方程,聯(lián)立起來解方程組便可得交點P的坐標(biāo).因為交戰(zhàn)點P在橢圓內(nèi),據(jù)此可得m的范圍.接下來將直線的方程與橢圓的方程聯(lián)立,再用弦長公式,可得弦AC,再將與橢圓的方程聯(lián)立,可得弦BD,由此可得四邊形ABCD面積與m的函數(shù)關(guān)系式,再用前面求得的m的范圍,就可求出這個函數(shù)式的范圍,即四邊形ABCD面積的取值范圍.
試題解析:(1)設(shè)橢圓的焦距是,則據(jù)條件有

解之得:                            3分
(2)據(jù)(1)知,又,得橢圓的方程是
                                    6分
(3)據(jù)條件有

                               7分
  解得
在橢圓內(nèi),有                      9分
又由,消去

所以
據(jù)對稱性易知       12分
所以                                13分
,所以                               14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,曲線、相交于、兩點.(
(Ⅰ)求、兩點的極坐標(biāo);
(Ⅱ)曲線與直線為參數(shù))分別相交于兩點,求線段的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某校同學(xué)設(shè)計一個如圖所示的“蝴蝶形圖案(陰影區(qū)域)”,其中是過拋物線焦點的兩條弦,且其焦點,,點軸上一點,記,其中為銳角.

(1)求拋物線方程;
(2)如果使“蝴蝶形圖案”的面積最小,求的大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線的焦點為F,過F的直線交拋物線于M、N兩點,其準線與x軸交于K點.

(1)求證:KF平分∠MKN;
(2)O為坐標(biāo)原點,直線MO、NO分別交準線于點P、Q,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點,是常數(shù)),且動點軸的距離比到點的距離小.
(1)求動點的軌跡的方程;
(2)(i)已知點,若曲線上存在不同兩點、滿足,求實數(shù)的取值范圍;
(ii)當(dāng)時,拋物線上是否存在異于、的點,使得經(jīng)過、三點的圓和拋物線在點處有相同的切線,若存在,求出點的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,過點的兩直線與拋物線相切于A、B兩點, AD、BC垂直于直線,垂足分別為D、C.

(1)若,求矩形ABCD面積;
(2)若,求矩形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的頂點為原點,其焦點到直線的距離為.設(shè)為直線上的點,過點作拋物線的兩條切線,其中為切點.
(Ⅰ)求拋物線的方程;
(Ⅱ)設(shè)點為直線上的點,求直線的方程;
(Ⅲ) 當(dāng)點在直線上移動時,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線的兩條漸近線與拋物線的準線分別交于兩點,為坐標(biāo)原點.若雙曲線的離心率為2,的面積為,則_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知動點到點的距離等于它到直線的距離,則點的軌跡方程是      .

查看答案和解析>>

同步練習(xí)冊答案