曲線C:x2-y2=1,(x≤0)上一點(diǎn)P(a,b)到它的一條斜率為正的漸近線的距離為它的離心率,則a+b的值是    ;曲線C的左焦點(diǎn)為F,M(x,y)(y≤0)是曲線C上的動(dòng)點(diǎn),則直線MF的傾角的范圍是   
【答案】分析:據(jù)雙曲線的方程,求出漸近線方程及離心率;利用點(diǎn)到直線的距離公式列出a,b的方程;將P的坐標(biāo)代入雙曲線方程得到a,b的另一個(gè)方程;解方程求出a+b;畫(huà)出雙曲線在所給范圍內(nèi)的圖象,畫(huà)出過(guò)左焦點(diǎn)且與漸近線平行的直線,將其轉(zhuǎn)動(dòng),數(shù)形結(jié)合判斷出MF的傾斜角的范圍.
解答:解:雙曲線C的漸近線的方程為y=±x,離心率為e=
∴斜率為正的漸近線為y=x即x-y=0.
,①
∴|a-b|=2
又∵a2-b2=1②
解①②得a+b=;

如圖,直線l是過(guò)左焦點(diǎn)且與漸近線y=x平行的直線,將其逆時(shí)針旋轉(zhuǎn),直到x軸重合,都與雙曲線的左下半支有交點(diǎn),
所以直線MF的傾角的范圍是
故答案為:
點(diǎn)評(píng):考查雙曲線的漸近線方程與雙曲線的焦點(diǎn)位置有關(guān)、考查解決直線與雙曲線的交點(diǎn)個(gè)數(shù)問(wèn)題常數(shù)形結(jié)合來(lái)解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

6、若曲線C:x2+y2+2ax-4ay+5a2-4=0上所有的點(diǎn)均在第二象限內(nèi),則a的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C:x2+y2-2ax-2(a-1)y-1+2a=0.
(1)證明:不論a取何實(shí)數(shù),曲線C必過(guò)定點(diǎn);
(2)當(dāng)a≠1時(shí),若曲線C與直線y=2x-1相切,求a的值;
(3)對(duì)所有的a∈R且a≠1,是否存在直線l與曲線C總相切?如果存在,求出l的方程;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知與曲線C:x2+y2-2x-2y+1=0相切的直線l分別交x、y軸于A、B兩點(diǎn),O為原點(diǎn),|OA|=a,|OB|=b(a>2,b>2).
(1)求證:若曲線C與直線l相切,則有(a-2)(b-2)=2;
(2)求線段AB中點(diǎn)的軌跡方程;
(3)求△AOB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知與曲線C:x2+y2-2x-2y+1=0相切的直線l交x,y的正半軸與A、B兩點(diǎn),O為原點(diǎn),|OA|=a,|OB|=b,(a>2,b>2).
(1)求線段AB中點(diǎn)的軌跡方程;
(2)求ab的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知與曲線C:x2+y2-2x-2y+1=0相切的直線l交x軸、y軸于A、B兩點(diǎn),O為原點(diǎn),且|OA|=a,|OB|=b,(a>2,b>2).
(1)求證:曲線C與直線l相切的條件是(a-2)(b-2)=2;
(2)求線段AB中點(diǎn)的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案