設(shè)f(x)=數(shù)學(xué)公式,若f(g(x))值域為[0,+∞),則g(x)的值域可能為


  1. A.
    (-∞,-1)∪[1,+∞)
  2. B.
    (-∞,-1]∪(0,+∞)
  3. C.
    [0,+∞)
  4. D.
    [1,+∞)
C
分析:根據(jù)函數(shù)解析式,將區(qū)間分解為(-∞,-1]、(-1,1)、[1,+∞)三部分,在坐標系中作出函數(shù)的圖象,再由圖象觀察其縱坐標的取值,可以得出g(x)的值域.
解答:解:在坐標系中作出函數(shù) 的圖象,
觀察圖象可知,當縱坐標在[0,+∞)上時,橫坐標在(-∞,-1]∪[0,+∞]上變化,
f(x)的值域是(-1,+∞),而f(g(x))的值域是[0,+∞),
∵若g(x)是二次函數(shù)
∴g(x)的值域是[0,∞).
g(x)的值域可能為:[0,∞).
故選C.
點評:本小題主要考查分段函數(shù)的值域、函數(shù)的圖象等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,屬于中檔題,根據(jù)解析式作出函數(shù)圖象,再由圖象來求解,利用數(shù)形結(jié)合思想使本題變得易懂.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于定義在區(qū)間D上的函數(shù)f(x)和g(x),如果對于任意x∈D,都有|f(x)-g(x)|≤1成立,那么稱函數(shù)f(x)在區(qū)間D上可被函數(shù)g(x)替代.
(1)若f(x)=
x
2
-
1
x
,g(x)=lnx
,試判斷在區(qū)間[[1,e]]上f(x)能否被g(x)替代?
(2)記f(x)=x,g(x)=lnx,證明f(x)在(
1
m
,m)(m>1)
上不能被g(x)替代;
(3)設(shè)f(x)=alnx-ax,g(x)=-
1
2
x2+x
,若f(x)在區(qū)間[1,e]上能被g(x)替代,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=x(x-1)(x+1),請問下列哪些選項是正確的?
(1)f(
1
2
)>0
(2)f(x)=2有整數(shù)解    (3)f(x)=x2+1有實數(shù)解   (4)f(x)=x有不等于零的有理數(shù)解
(5)若f(a)=2,則f(-a)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

對于定義在區(qū)間D上的函數(shù)f(x)和g(x),如果對于任意x∈D,都有|f(x)-g(x)|≤1成立,那么稱函數(shù)f(x)在區(qū)間D上可被函數(shù)g(x)替代.
(1)若f(x)=
x
2
-
1
x
,g(x)=lnx
,試判斷在區(qū)間[[1,e]]上f(x)能否被g(x)替代?
(2)記f(x)=x,g(x)=lnx,證明f(x)在(
1
m
,m)(m>1)
上不能被g(x)替代;
(3)設(shè)f(x)=alnx-ax,g(x)=-
1
2
x2+x
,若f(x)在區(qū)間[1,e]上能被g(x)替代,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:臺灣 題型:解答題

設(shè)f(x)=x(x-1)(x+1),請問下列哪些選項是正確的?
(1)f(
1
2
)>0
(2)f(x)=2有整數(shù)解    (3)f(x)=x2+1有實數(shù)解   (4)f(x)=x有不等于零的有理數(shù)解
(5)若f(a)=2,則f(-a)=2.

查看答案和解析>>

同步練習(xí)冊答案