(本小題滿分13分)已知曲線,從上的點軸的垂線,交于點,再從點軸的垂線,交于點,設(shè)

(1)求數(shù)列的通項公式;[來源:學|科|網(wǎng)Z|X|X|K]

(2)記,數(shù)列的前項和為,求證:;

(3)若已知,記數(shù)列的前項和為,數(shù)列的前項和為,試比較的大。

 

【答案】

解:(1)依題意點的坐標為, 

(2),所以:,…(5分)

時,,

,

(當時取“”).…(8分)

(3),,

, 而,所以可得

于是

     …10分

;

時,

時,          

下面證明:當時,

證法一:(利用組合恒等式放縮)

時,  ∴當時,     ……13分

證法二:(數(shù)學歸納法)證明略

證法三:(函數(shù)法)∵時,

構(gòu)造函數(shù),

∴當時,

在區(qū)間是減函數(shù),

∴當時,

在區(qū)間是減函數(shù),

∴當時,

從而時,,即∴當時,

 

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2015屆江西省高一第二次月考數(shù)學試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標系中,畫出函數(shù)在區(qū)間上的圖象.

(3)設(shè)0<x<,且方程有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題

(本小題滿分13分)已知定義域為的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調(diào)性;

(3)若對任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:河南省09-10學年高二下學期期末數(shù)學試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,的中點。

(Ⅰ)求證:∥平面;

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年福建省高三5月月考調(diào)理科數(shù)學 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項.

(1) 求函數(shù)的表達式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項和

 

 

查看答案和解析>>

同步練習冊答案