【題目】到直線的距離等于4,且在不等式表示的平面區(qū)域內(nèi),則點的坐標是____

【答案】

【解析】試題分析:根據(jù)點到直線的距離公式表示出P點到直線4x﹣3y+1=0的距離,讓其等于4列出關于a的方程,求出a的值,然后又因為P在不等式2x+y﹣3<0所表示的平面區(qū)域內(nèi),如圖陰影部分表示不等式2x+y﹣3<0所表示的平面區(qū)域,可判斷出滿足題意的a的值,即得點P的坐標.

詳解:

P到直線4x﹣3y+1=0的距離d=,則4a﹣8=204a﹣8=﹣20,解得a=7或﹣3,因為P點在不等式2x+y﹣3<0所表示的平面區(qū)域內(nèi),如圖.

根據(jù)圖象可知a=7不滿足題意,舍去.

所以a的值為﹣3,

則點P的坐標是 (﹣3,3),

故答案為:(﹣3,3).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了引導居民合理用水,某市決定全面實施階梯水價,階梯水價原則上以住宅(一套住宅為一戶)的月用水量為基準定價,具體劃分標準如表:

階梯級別

第一階梯水量

第二階梯水量

第三階梯水量

月用水量范圍(單位:立方米)

(0,10]

(10,15]

(15,+∞)

從本市隨機抽取了10戶家庭,統(tǒng)計了同一個月的用水量,得到如圖所示的莖葉圖.

(1)現(xiàn)要在這10戶家庭中任意選取3戶,求取到第二階梯水量的戶數(shù)的分布列和均值;
(2)用抽到的10戶家庭作為樣本估計全市的居民用水情況,從全市依次隨機抽取10戶,若抽到n戶月用水量為第二階梯水量的可能性最大,求出n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ln(x+1)+ax,其中a∈R.
(Ⅰ) 當a=﹣1時,求證:f(x)≤0;
(Ⅱ) 對任意x2≥ex1>0,存在x∈(﹣1,+∞),使 成立,求a的取值范圍.(其中e是自然對數(shù)的底數(shù),e=2.71828…)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為評估一種農(nóng)作物的種植效果,選了n塊地作試驗田.這n塊地的畝產(chǎn)量(單位: )分別為 ,下面給出的指標中可以用來評估這種農(nóng)作物畝產(chǎn)量穩(wěn)定程度的是( )
A. 的平均數(shù)
B. 的標準差
C. 的最大值
D. 的中位數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓 )的右焦點為F,右頂點為A,已知 ,其中O 為原點, e為橢圓的離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)設過點A的直線l與橢圓交于點B(B不在x軸上),垂直于l的直線與l交于點M,與y軸交于點H,若 ,且 ,求直線的l斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一次數(shù)學考試后,某老師從甲,乙兩個班級中各抽取5人,記錄他們的考試成績,得到如圖所示的莖葉圖,已知甲班5名同學成績的平均數(shù)為81,乙班5名同學成績的中位數(shù)為73,則 的值為( )

A.2
B.-2
C.3
D.-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行下面的程序框圖,如果輸入的,則輸出的( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若關于x的不等式 至少有一個負數(shù)解,則實數(shù)a的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種商品在30天內(nèi)每克的銷售價格(元)與時間的函數(shù)圖像是如圖所示的兩條線段,(不包含兩點);該商品在 30 天內(nèi)日銷售量(克)與時間(天)之間的函數(shù)關系如下表所示.

5

1

5

2

0

3

0

銷售量

3

5

2

5

2

0

1

0

(1)根據(jù)提供的圖象,寫出該商品每克銷售的價格(元)與時間的函數(shù)關系式;

(2)根據(jù)表中數(shù)據(jù)寫出一個反映日銷售量隨時間變化的函數(shù)關系式;

(3)在(2)的基礎上求該商品的日銷售金額的最大值,并求出對應的.

(注:日銷售金額=每克的銷售價格×日銷售量)

查看答案和解析>>

同步練習冊答案