已知拋物線Σ1y=
1
4
x2
的焦點(diǎn)F在橢圓Σ2
x2
a2
+
y2
b2
=1
(a>b>0)上,直線l與拋物線Σ1相切于點(diǎn)P(2,1),并經(jīng)過橢圓Σ2的焦點(diǎn)F2
(1)求橢圓Σ2的方程;
(2)設(shè)橢圓Σ2的另一個焦點(diǎn)為F1,試判斷直線FF1與l的位置關(guān)系.若相交,求出交點(diǎn)坐標(biāo);若平行,求兩直線之間的距離.
(1)拋物線y=
1
4
x2
即x2=4y的焦點(diǎn)F(0,1),
由題意可得
0
a2
+
1
b2
=1
,解得b=1,
切線l的斜率k=y/=
1
2
x|x=2=1
,
∴切線l方程為y-1=x-2,即x-y-1=0,
令y=0,解得x=1.∴焦點(diǎn)F2(1,0),即c=1.
a=
b2+c2
=
2
,
橢圓Σ2的方程為
x2
2
+y2=1

(2)由(1)得F1(-1,0),
直線FF1的方程為
y-0
1-0
=
x-(-1)
0-(-1)
,即x-y+1=0,
kFF1=k=1,且F1(-1,0)不在直線l上,
∴直線FF1l,
FF1與l之間的距離即為F(0,1)到直線l的距離d=
|0-1-1|
12+12
=
2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖⊙O的半徑OB垂直于直徑AC,M為AO上一點(diǎn),BM的延長線交⊙O于點(diǎn)N,過點(diǎn)N的切線交CA的延長線于P.
(1)求證:;
(2)若⊙O的半徑為,OA=OM,求MN的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

有一塊直角三角形木板,如圖所示,∠C=90°,AB=5 cm,BC=3 cm,AC=4 cm,根據(jù)需要,要把它加工成一個面積最大的正方形木板,設(shè)計(jì)一個方案,應(yīng)怎樣裁才能使正方形木板面積最大,并求出這個正方形木板的邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y2=-x與直線y=k(x+1)相交于A、B兩點(diǎn).
(1)求證:OA⊥OB;
(2)當(dāng)△OAB的面積等于
10
時,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)

(1)若橢圓的長軸長為4,離心率為
3
2
,求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,設(shè)過定點(diǎn)M(0,2)的直線l與橢圓C交于不同的兩點(diǎn)A、B,且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線的左右焦點(diǎn)F1,F(xiàn)2的坐標(biāo)為(-4,0)與(4,0),離心率e=2.
(1)求雙曲線的方程;
(2)已知橢圓
x2
36
+
y2
20
=1
,點(diǎn)P是雙曲線與橢圓兩曲線在第一象限的交點(diǎn),求|PF1|•|PF2|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知兩點(diǎn)A(-2,0),B(2,0),直線AM、BM相交于點(diǎn)M,且這兩條直線的斜率之積為-
3
4

(Ⅰ)求點(diǎn)M的軌跡方程;
(Ⅱ)記點(diǎn)M的軌跡為曲線C,曲線C上在第一象限的點(diǎn)P的橫坐標(biāo)為1,直線PE、PF與圓(x-1)2+y2=r20<r<
3
2
)相切于點(diǎn)E、F,又PE、PF與曲線C的另一交點(diǎn)分別為Q、R.求△OQR的面積的最大值(其中點(diǎn)O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,是等腰三角形,是底邊延長線上一點(diǎn),
,,則腰長=        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(選修4-1:幾何證明選講)如圖,PA是圓O的切線,切點(diǎn)為A,PO交圓O于B,C兩點(diǎn),,則=_________.

查看答案和解析>>

同步練習(xí)冊答案