在空間四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點.若AC=BD=a,且AC與BD所成的角為60°,則四邊形EFGH的面積為(  )
分析:先證明四邊形EFGH為菱形,然后說明∠EFG=60°,最后根據(jù)三角形的面積公式即可求出所求.
解答:解:連接EH,因為EH是△ABD的中位線,所以EH∥BD,且EH=BD.
同理,F(xiàn)G∥BD,EF∥AC,且FG=BD,EF=AC.
所以EH∥FG,且EH=FG.
所以四邊形EFGH為平行四邊形.
因為AC=BD=a,AC與BD所成的角為60°
所以EF=EH.所以四邊形EFGH為菱形,∠EFG=60°.
∴四邊形EFGH的面積是2×
3
4
×(
a
2
2=
3
8
a2
故選A.
點評:本題主要考查知識點:簡單幾何體和公理四,公理四:和同一條直線平行的直線平行,證明菱形常用方法是先證明它是平行四邊形再證明鄰邊相等相等,以及面積公式,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

8、在空間四邊形ABCD的各邊AB,BC,CD,DA上依次取點E,F(xiàn),G,H,若EH、FG所在直線相交于點P,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間四邊形ABCD的邊AB,BC,CD,DA上分別取E,F(xiàn),G,H使
AE
EB
=
AH
HD
=1,
CF
FB
=
CG
GD
=
1
2
,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間四邊形ABCD中,連接AC、BD,若△BCD是正三角形,且E為其中心,則
AB
+
1
2
BC
-
3
2
DE
-
AD
化簡后的結(jié)果為( 。
A、
AB
B、2
BD
C、
0
D、2
DE

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•順義區(qū)一模)如圖,已知在空間四邊形ABCD中,AB=AC=DB=DC,E為BC的中點.
(Ⅰ)求證:平面ADE⊥平面ABC;
(Ⅱ)若AB=5,BC=6,AD=4,求幾何體ABCD的體積;
(Ⅲ)在(Ⅱ)的條件下,若G為△ABD的重心,試問在線段BC上是否存在點F,使GF∥平面ADE?若存在,請指出點F在BC上的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點.若AC=BD=a,若四邊形EFGH的面積為
3
8
a2
,則異面直線AC與BD所成的角為( 。
A、30°B、60°
C、120°D、60°或120°

查看答案和解析>>

同步練習(xí)冊答案