【題目】已知,為實數(shù),函數(shù),且函數(shù)是偶函數(shù),函數(shù)在區(qū)間上是減函數(shù),且在區(qū)間上是增函數(shù).
(1)求函數(shù)的解析式;
(2)求實數(shù)的值;
(3)設(shè),問是否存在實數(shù),使得在區(qū)間上有最小值-2?若存在,求出的值;若不存在,說明理由.
【答案】(1);(2);(3)存在,或
【解析】
(1)利用函數(shù)是偶函數(shù),求函數(shù)的解析式;
(2)利用復合函數(shù)的單調(diào)性,求實數(shù)b的值;
(3)分類討論,求出函數(shù)的最小值,利用在區(qū)間上有最小值為﹣2,得出結(jié)論.
(1)∵函數(shù)是偶函數(shù),∴(x+1)2+a(x+1)+1=(﹣x+1)2+a(﹣x+1)+1,∴4x+2ax=0,∴a=﹣2,
∴=(x﹣1)2;
(2)=﹣bx4+(5b﹣1)x2+2﹣b,
令t=x2,u(t)=﹣bt2+(5b﹣1)t﹣(b﹣2),
在區(qū)間上,t=x2是減函數(shù),且t∈,由是減函數(shù),可知為增函數(shù);
在區(qū)間上,t=x2是減函數(shù),且t∈(0,4),由是增函數(shù),可知為減函數(shù),
∴由在(0,4)上是減函數(shù),(4,+∞)上是增函數(shù),可得二次函數(shù)開口向上,b<0,且﹣=4,
∴;
(3),x∈[0,2].
當q<0,ymin=h(0)=1+2q=﹣2,q=﹣;
當0≤q≤2,ymin=h(q)=﹣q2+2q+1=﹣2,∴q=3或﹣1,舍去;
當q>2,ymin=h(2)=﹣2q+5=﹣2,q=,
綜上所述:或.
科目:高中數(shù)學 來源: 題型:
【題目】已知點.若曲線上存在,兩點,使為正三角形,則稱為型曲線.給定下列三條曲線:
①;
②;
③.
其中型曲線的個數(shù)是
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的通項公式為,其中,、.
(1)試寫出一組、的值,使得數(shù)列中的各項均為正數(shù).
(2)若,,數(shù)列滿足,且對任意的(),均有,寫出所有滿足條件的的值.
(3)若,數(shù)列滿足,其前項和為,且使(、,)的和有且僅有組,、、…、中有至少個連續(xù)項的值相等,其它項的值均不相等,求、的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的通項公式為 an=(n﹣k1)(n﹣k2),其中k1,k2∈Z:
(1)試寫出一組k1,k2∈Z的值,使得數(shù)列{an}中的各項均為正數(shù);
(2)若k1=1、k2∈N*,數(shù)列{bn}滿足bn=,且對任意m∈N*(m≠3),均有b3<bm,寫出所有滿足條件的k2的值;
(3)若0<k1<k2,數(shù)列{cn}滿足cn=an+|an|,其前n項和為Sn,且使ci=cj≠0(i,j∈N*,i<j)的i和j有且僅有4組,S1、S2、…、Sn中至少3個連續(xù)項的值相等,其他項的值均不相等,求k1,k2的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個三角形數(shù)表按如下方式構(gòu)成(如圖:其中項數(shù)):第一行是以4為首項,4為公差的等差數(shù)列,從第二行起,每一個數(shù)是其肩上兩個數(shù)的和,例如:;為數(shù)表中第行的第個數(shù).
…
…
…
……
(1)求第2行和第3行的通項公式和;
(2)證明:數(shù)表中除最后2行外每一行的數(shù)都依次成等差數(shù)列,并求關(guān)于的表達式;
(3)若,,試求一個等比數(shù)列,使得,且對于任意的,均存在實數(shù),當時,都有.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1的側(cè)面AA1B1B是菱形,側(cè)面AA1C1C是矩形,平面AA1C1C⊥平面AA1B1B,∠BAA1,AA1=2AC=2,O為AA1的中點.
(1)求證:OC⊥BC1;
(2)求點C1到平面ABC的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知直三棱柱中,,,,,點DE分別是邊的中點,求:
(1)該直三棱柱的側(cè)面積;
(2)異面直線與所成的角的大小(用反三角函數(shù)值表示)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)作出函數(shù)的圖像;
(2)根據(jù)(1)所得圖像,填寫下面的表格:
性質(zhì) | 定義域 | 值域 | 單調(diào)性 | 奇偶性 | 零點 |
(3)關(guān)于的方程恰有6個不同的實數(shù)解,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com