已知雙曲線的焦點到漸近線的距離為,且雙曲線右支上一點P到右焦點的距離的最小值為2,則雙曲線的離心率為( )
A.
B.3
C.2
D.
【答案】分析:根據(jù)雙曲線性質可知雙曲線右支上一點P到右焦點的距離的最小時,p在右頂點上,進而求得c-a的值,然后利用點到直線的距離表示出焦點到漸近線的距離,求得a和c的關系式,最后兩關系式聯(lián)立求得a和c,則離心率可得.
解答:解:依題意可知雙曲線右支上一點P到右焦點的距離的最小時,P在右頂點上,即c-a=2①
∵焦點到漸近線的距離為,
=2,②
①②聯(lián)立求得a=2,c=4
∴e==2
故選C.
點評:本題主要考查了雙曲線的簡單性質.考查了學生數(shù)形結合的思想,解析幾何知識的綜合運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線的焦點到漸近線的距離等于右焦點到右頂點的距離的2倍,則雙曲線的離心率e的值為( 。
A、
2
B、
5
3
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(08年湖南六校聯(lián)考文) 已知雙曲線的焦點到漸近線的距離等于右焦點到右頂點距離的2倍,則此雙曲線的離心率的值為(  )

      A.                           B. 2                             C.                         D.

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆黑龍江省高二上學期期末理科數(shù)學試卷 題型:選擇題

已知雙曲線的焦點到漸近線的距離為,且雙曲線右支上一點到右焦點的距離的最小值為2,則雙曲線的離心率為(  )

A、        B、3           C、2         D、

 

查看答案和解析>>

科目:高中數(shù)學 來源:黑龍江省哈爾濱市2010屆高三一模數(shù)學(理)試題 題型:選擇題

已知雙曲線的焦點到漸近線的距離為,且雙曲線右支上一點到右焦點的距離的最小值為2,則雙曲線的離心率為(   )

(A)         (B)3           (C)2         (D)

 

查看答案和解析>>

同步練習冊答案